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Preface 

Diffusion-weighted imaging (DWI) is a quantitative MRI method that measures the 

apparent diffusion coefficient (ADC) of water molecules, which reflects cell density and 

serves as an indication of malignancy. Unfortunately, however, the clinical value of DWI 

is severely limited by the undesirable features in images that common clinical methods 

produce, including large geometric distortions, ghosting and chemical shift artifacts, and 

insufficient spatial resolution. These problematic artifacts and low resolution have 

hindered the translation of body DWI to the clinic. Thus, in order to exploit information 

encoded in diffusion characteristics and fully assess the clinical value of ADC 

measurements, it is first imperative to achieve technical advancements of DWI.  

The purpose of this work is to improve DWI methods for breast imaging at 3 

Tesla to robustly provide diffusion-weighted images and ADC maps with anatomical 

quality and resolution.  

Chapters 1 and 2 lay out background information to provide clinical motivation 

for this work and explain the current standard in breast DWI, as well as some alternatives 

proposed throughout the literature. The main work of this project has two major parts: 

Nyquist ghost correction and the use of simultaneous multislice imaging (SMS) to 

achieve high resolution. Thus, the remainder of the thesis is centered around two 

corresponding journal articles.  

Chapters 3 and 4 focus on Nyquist ghost correction. Chapter 3 explains much of 

the exploratory work done to characterize the Nyquist ghost in breast DWI. This work led 

to the development of a novel referenceless ghost correction method, presented in Section 

4.1, called Ghost/Object minimization. Section 4.2 then presents a rigorous comparison 

of Nyquist ghost correction methods, including Ghost/Object minimization, in a standard 

breast DWI acquisition, which was presented as a paper entitled Nyquist Ghost 

Correction of Breast Diffusion Weighted Imaging using Referenceless Methods. 

Together, this work suggested the need for referenceless Nyquist ghost correction in 

further work. Thus, these methods were applied to advanced SMS imaging and assessed 

an ISMRM abstract, presented in Section 4.3.  



 xi 

This work culminates in Chapter 5, which describes the advanced high-resolution 

SMS method that employs improved Nyquist ghost correction. Using a reader study, 

these methods were compared to a popular alternative, RS-EPI, which is provided here 

and was presented in the paper A comparison of methods for high spatial resolution 

diffusion-weighted imaging in breast MRI. Chapter 6 suggests several promising future 

directions, including some preliminary work explored throughout this project. Finally, 

Chapter 7 comments on future clinical translation and further technical developments. 
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Chapter 1: Breast Cancer and the Role of MRI 

In the United States, breast cancer is the 2nd most common cancer for females after skin 

cancers and affects about 13% of women over the course of their lifetimes. The American 

Cancer Society predicts that in 2020 about 276,000 women will be diagnosed with 

invasive breast cancer, which will lead to over 42,000 deaths (1). While the incidence of 

breast cancer has increased steadily by about 0.3% each year, since 2013 the mortality 

rates have been decreasing by 1.3% yearly (2). This improvement is likely caused, not 

only by advances in treatment, but also by increased public awareness and earlier 

detection thanks to evolving screening practices. 

Magnetic resonance imaging (MRI) is commonly used for breast cancer care for 

screening, disease staging, and monitoring treatment response. Additionally, it is less 

frequently used for image guided biopsy and diagnosis of mammography occult lesions. 

A typical MRI protocol consists of a T1-weighted image prior to and one or more after 

the intravenous introduction of a contrast agent and a T2-weighted image. The 

gadolinium-based contrast agent shortens T1 relaxation of the blood, which accumulates 

around the cancer due to angiogenesis and leaky blood vessels, two hallmarks of cancer. 

Thus, the cancer appears bright on a contrast-enhanced (CE) image.  

1.1 Applications of MRI in Breast Cancer 

1.1.1 Screening 

Breast cancer screening is the systematic surveillance of disease in an asymptomatic 

patient; its goal is to detect and treat breast cancer before symptoms occur and before 

metastasis to other organs. Screening is typically preformed using mammography with 

two nearly perpendicular views of each breast. It is recommended that women of average 

risk get yearly mammographic screening beginning at age 40. After the inception of 

mammographic screening many studies have consistently confirmed that annual 

mammographic screening reduces the mortality rate by at least 30%.  
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However, mammography often fails to detect some cancers especially in women 

with dense breasts, young high-risk patients, and those that carry BRCA mutations (3,4). 

Alternatively, CE-MRI has been shown to have very high sensitivity for the detection of 

breast cancer. Several studies have measured a sensitivity between 75.2% and 100%, 

most of which are over 80%, and a specificity between 83% and 98.4% (3). 

Mammography has been reported with sensitivity of 63% for women with dense breasts 

to 87% for those with low density and 90-96% specificity (5). Thus, the American Cancer 

Society recommends annual MRI screening to all women with a lifetime risk of breast 

cancer of 20% or higher based on family history, genetic predisposition, history of 

radiation to the chest, and p53 and PTEN mutations (6,7). 

Assessment Management Likelihood of Cancer 

Category 0: Incomplete – 
Need Additional Imaging 
Evaluation 

Recommend addition imaging: 
mammogram or targeted US 

N/A 

Category 1: Negative Routine breast MRI screening if 
cumulative lifetime risk ≥ 20% 

Essentially 0% likelihood 
of malignancy  

Category 2: Benign Routine breast MRI screening if 
cumulative lifetime risk ≥ 20% 

Essentially 0% likelihood 
of malignancy  

Category 3: Probably 
Benign 

Short-interval (6-month) follow-
up 

≥ 0% but ≤ 2% likelihood 
of malignancy  

Category 4: Suspicious Tissue diagnosis > 2% but < 95% 
likelihood of malignancy 

Category 5: Highly 
Suggestive of Malignancy 

Tissue diagnosis ≥ 95% likelihood of 
malignancy 

Category 6: Known 
Biopsy-Proven Malignancy 

Surgical excision when 
clinically appropriate 

N/A 

 

Table 1.1 – BI-RADS® Assessment Categories and Management 

Recommendations

Modified from Morris EA, Comstock CE, Lee CH, et al. ACR BI-RADS® Magnetic 

Resonance Imaging. In: ACR BI-RADS® Atlas, Breast Imaging Reporting and Data 

System. Reston, VA, American College of Radiology; 2013.
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Historically, mammography reports were ambiguous and contained vague 

descriptions of the finding, which made communication between physicians very 

difficult. It was necessary to streamline a reporting system as screening became more 

widespread. In 1993 the American College of Radiology (ACR) released a lexicon called 

Breast Imaging Reporting and Data System (BI-RADS) for standardizing mammographic 

reporting (Table 1.1). The system included structured reports that were organized into 

categories like breast density and a final assessment of the patient’s risk and need for 

biopsy. Since then, the system has been regularly updated and extended to include 

ultrasound and MRI findings (8).  

1.1.2 Staging 

After confirming biopsy-proven cancer, MRI can also be used prior to surgery to 

characterize the extent of disease, including multifocal disease, chest wall involvement, 

axillary lymph nodes, and the contralateral breast. The MR images can then be used to 

help guide treatment and for surgical planning.  

1.1.3 Monitoring treatment response 

Historically the standard of care for breast cancer included surgery followed by adjuvant 

systemic therapy and possibly radiation. Recently, however, neoadjuvant systemic 

therapy has become more common for aggressive cancers and has been shown to 

downgrade surgeries of both the breast and nodes. Neoadjuvant systemic therapy usually 

includes cytotoxic chemotherapy or hormonal therapy and is indicated for patients with a 

tumor ≥ 2 cm or with positive lymph nodes, and particularly for triple negative or HER-2 

amplified cancers (9). 

Additionally, neoadjuvant chemotherapy can be advantageous because it can 

provide the ability to monitor the treatment response. Throughout therapy, treatment 

response may inform the course of treatment. Prior to surgery, pathologic complete 

response (pCR), which refers to the absence of invasive and in situ disease in the breast 

and lymph nodes as determined by pathology, has been shown to predict overall survival 

and disease-free survival in some subtypes. For example, the I-SPY 2 TRIAL is one large 
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study that utilizes pCR as a metric to assess neoadjuvant treatments of aggressive 

cancers.  

1.2 The I-SPY Initiative  

The University of Minnesota’s Masonic Cancer Center is one of many clinical sites that 

participates in a breast cancer clinical trial called Investigation of Serial studies to Predict 

Your Therapeutic Response with Imaging And moLecular analysis 2 (I-SPY 2 TRIAL). 

The I-SPY initiative was formed in 1998 led by breast surgeon Dr. Laura Esserman and 

Dr. Nola Hylton, who is an expert in breast MRI, from the University of California San 

Francisco. Drs. Esserman and Hylton formed a multicenter coalition to provide effective 

drugs to the right patient as early as possible (10). The group identified and addressed 

four major flaws in breast cancer research and treatment: 1) drug studies are often set in 

the metastatic setting when the disease is no longer curable; 2) localized and early-stage 

cancers were treated with adjuvant therapy, in other words after surgery; 3) most studies 

failed to include biomarkers beyond the common hormone receptor (HR) and human 

epidermal growth factor receptor (HER2); and 4) the use of randomized controlled trials, 

considered the gold standard, is inefficient because the structure does not account for the 

trial results throughout the study.  

1.2.1 I-SPY 2 TRIAL   

I-SPY 2, the second stage of the I-SPY initiative, was launched in 2010 to further address 

the shortcomings described above. I-SPY 2 included neoadjuvant systemic therapy in 

order to treat the cancer at its earliest stages. Pathologic complete response (pCR), which 

describes the full disappearance of the tumor, is then used as the clinical endpoint instead 

of previously used recurrence free survival (RFS) that takes 5 to 7 years to measure. This 

allows for faster updates to assess the effectiveness of drugs throughout the trial.  

In I-SPY 2, cancers are thoroughly classified by hormone receptor status, as well 

as a 70-gene MammaPrint assay in order to include a diverse patient population and 

provide more information to predict outcomes to specific drugs. The trial examines up to 
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12 therapies simultaneously, which allows for the inclusion of nearly all breast cancer 

patients and accelerates the evaluation of many drugs.  

The study was designed in an adaptive way that is informed by statistical analysis. 

Each patient receives four or more contrast enhanced MRI exams and several studies of 

tumor pathology during the course of their treatment. These serial MRI measurements, 

scores of residual cancer burden, and information about tumor subtype, are used to assess 

each drug for the specific subtype and can even indicate prompt adjustment in treatment 

for the individual patient. The weighted randomization of treatments for future 

participants is updated based on these ongoing results. Thus, drugs that are learned to be 

effective for specific subtypes will be increasingly assigned to patients within those 

subtypes. Moreover, drugs can be added, dropped, or graduated throughout the trial.  

1.2.2 ACRIN 6698 – A sub-study 

One additional advantage of I-SPY 2 is the flexibility of the study design, which 

accommodates sub-studies within the trial. The American College of Radiology Imaging 

Network (ACRIN) trial 6698 is one sub-study of I-SPY 2 that was conducted between 

2012 and 2015. ACRIN 6698 is another multicenter trial that aimed to evaluate the ability 

of diffusion weighted MRI for monitoring treatment response. The University of 

Minnesota’s Masonic Cancer Center is also a clinical site included in I-SPY 2 and 

ACRIN 6698. Thus, much of the data included in this project were acquired based on 

these protocol requirements and submitted to the trial. 

 In order to join ACRIN 6698, clinical sites were required to qualify their 1.5 or 3 

T MR systems based on assessment of DWI studies on phantoms and patients following 

protocol guidelines set by the trial. The MR protocol included T2-weighted, DWI, and 

axial T1-weighted CE-MRI with at least 6 timepoints. The DWI protocol used the 

standard axial single shot SE-EPI with b-values of 0, 100, 600, and 800 s/mm2. The scan 

was limited to 5 minutes and required to have in plane resolution of 1.7-2.8 mm and 4-5 

mm slices.  

The main hypothesis to test in ACRIN 6698 was that changes in ADC would be 

predictive of pCR in breast cancer patients undergoing neoadjuvant chemotherapy. The 
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study also sought to assess the predicted value of combined MRI-derived metrics, ADC 

values and the functional tumor volume measured on DCE images (11). To that end, the 

trial was designed to include CE-MRI and DWI at four timepoints throughout treatment. 

Each patient received an initial MR exam (T0) followed by 12 weekly cycles of 

Paclitaxel and a randomized experimental neoadjuvant chemotherapy agent. A second 

MR exam was conducted midway through (T1, 3 weeks) and after this therapy (T2). 

Finally, all the patients received four cycles of Anthracycline and a final MR exam (T3). 

Two recent reports evaluated these MR findings, namely the initial and change of ADC 

and functional tumor volume (FTV), at all four timepoints.  

In one manuscript by Partridge et al. (12) the mean ADC generally increased 

throughout treatment. While ADC prior to treatment (T0) or early treatment (T1) was not 

predictive of pCR, increase in ADC value at T3 predicted pCR with AUC = 0.60 (p = 

0.17), prior to adjustments for multiple comparisons. With adjustments, ∆ADC predicted 

pCR in HR+/HER2- tumors at T2 and triple-negative tumors at T3. Although ∆ADC did 

not reach significance for other subtypes at any time points, the predictive power of ADC 

increased when combined with tumor subtype (from AUC = 0.57 to AUC = 0.72, 

p=0.302). Interestingly, adding ∆FTV did not seem to improve the predictive value, 

suggesting that change of ADC may be comparable to that of CE-MRI-derived tumor 

volume and may be a good candidate for a contrast free alternative.  

Li et al. (13) conducted a similar study on I-SPY 2 data, rather than ACRIN 6698. 

This DWI was acquired with 2 b-values, as opposed to 4, and was not subject to the strict 

quality control of ACRIN 6698. They found that the initial FTV predicts pCR (AUC = 

0.63, p < 0.0001), as does the FTV change at all timepoints (AUC = 0.63 to 0.7, p < 

0.0001). As a single predictor, the initial ADC did not predict pCR, but the change of 

ADC at the three following timepoints did with AUC increasing with each timepoint 

from 0.57 (T1, p<0.03) and 0.72 (T3) (p < 0.0001). Although variable across different 

subtypes, for the overall cohort, adding ADC to FTV increased the predictive value at T2 

(from AUC = 0.76 to AUC = 0.78) and T3 (AUC = 0.76 to AUC = 0.81). ADC at T0 was 

valuable for one subgroup, HR+/HER2-, increasing the AUC from 0.52 with FTV only to 

0.65 with both.  
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Both of the studies discussed above show promise for the value of DWI in 

predicting pCR, especially for certain cancer subtypes. However, the quality of the 

diffusion data was still limited as many advanced DWI methods are not available on 

clinical scanners. Thus, I-SPY 2 used the standard SE-EPI method, which has seen recent 

developments, including readout segmentation, multishot improvements, and 

simultaneous multislice imaging. DWI analysis methods also continue to evolve. Data 

were acquired across different vendors, field strengths, and sites. Despite strict quality 

control, image quality varied, especially in DWI which already suffers from poor 

resolution, low SNR, and geometric distortion. As methods continue to improve across 

clinical sites, these promising results are expected to further improve.  

1.3 Controversy in Breast MRI  

After the introduction of mammographic screening, researchers saw clear evidence of an 

improvement in the breast cancer mortality rate (14). Still, x-ray mammography often 

misses cancers, especially in patients with dense breasts, younger women, and women 

with high risk. Because CE-MRI is extremely sensitive to breast cancer, it seemed to be a 

good candidate for breast cancer clinical care, particularly in the cases where 

mammography is insufficient. However, the introduction of MR screening and 

preoperative staging has not led to a clear decrease in mortality as expected. Instead, 

breast MRI is associated with higher rates of false positives and negative biopsies in the 

screening setting. As a staging tool, MR images often contribute to decisions for more 

aggressive surgeries. Thus, the widespread use of MRI for breast cancer screening and 

preoperative staging remains a controversial subject that needs consensus in order to 

maintain the best screening practices for patients. 

1.3.1 Practical considerations 

According to an article by Dr. Cheryl Herman in the Ethics Journal of the American 

Medical Association, for a screening tool to be “good”, it must be affordable, safe, widely 

available, and demonstrate improved health outcomes by reliable detection of a high 

proportion of the disease (15). One major drawback of using MRI as a screening tool for 

breast cancer is its high cost and low availability. While the cost varies widely, it was 
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estimated in 2007 that a CE-MRI breast exam cost $1,000 to $2,000, about ten times that 

of mammography (16). Moreover, many insurance plans do not cover the cost of such 

advanced imaging. Additionally, due to the large size and cost of MRI scanners, MR 

exams are significantly less accessible than mammography, especially in rural areas and 

less developed countries. If the detected cancer requires an image-guided biopsy, MR-

guided biopsies are difficult, expensive, and rarely done clinically.  

 CE-MRI has also been associated with increased false positives that can cause 

unnecessary stress on the patient as well as costly follow-up tests, including surgical or 

needle biopsies, alternative imaging with associated radiation dose, or second-opinion 

consultations (17). Finally, the essential screening sequence (CE-MRI) requires injection 

of a gadolinium-based contrast agent. The safety of gadolinium is still a very active area 

of research with contradicting evidence and opinions within the field. Gadolinium 

injections are contraindicated for patients with compromised kidney function and can 

additionally cause rare but life-threatening allergic reactions.  

1.3.2 The concept of overdiagnosis 

Overdiagnosis refers to the detection of disease that would not have clinical effect in the 

patient’s lifetime if it went undiagnosed; overdiagnosis can lead to overtreatment and 

unnecessary psychological harm on a patient and their family. Breast MRI has been 

thought to cause overdiagnosis because, according to [Ref (18)], our ability to detect 

disease with MRI is unequal to our ability to predict its behavior.  

The extensive use of breast MRI in screening and preoperative staging is 

controversial because while it is associated with increased detection and more invasive 

surgeries, there is still no evidence that overall outcomes have been improved. For 

example, many women receive preoperative MRI to identify additional foci occult on 

mammography, which occurs in about 16% of cases due to the high sensitivity of MRI, 

according to a meta-analysis by Houssami and Hayes (17). These preoperative exams are 

performed under the assumption that the MRI will find more foci, which may change the 

surgical plan to remove the previously undetected disease, reducing the re-excision rate 

and recurrence and/or metastasis, and thereby reduce mortality. While the common use of 
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preoperative MRI has been shown to often increase surgery from breast conservation to 

mastectomy, there is a lack of evidence that suggest these more aggressive surgeries 

improve the outcomes as expected (19). In other words, there has been no sign of a 

decrease in re-excision rates, positive margins, local recurrence, or mortality despite 

increased rates of mastectomy.  

This lack of improved outcomes has many concerned that the use of MRI is 

leading to overdiagnosis of breast cancer and that many of these cancers that were 

undetected on mammography (especially secondary foci) are not actually clinically 

significant (especially for patient who are undergoing standard excision and breast 

radiation). These unnecessary radical surgeries can then have negative impacts on the 

patients and add financial burden to the healthcare system.  

In terms of breast cancer screening, there is little data that thoroughly compares 

mammography and MRI. While studies have shown an increase in sensitivity and 

increased detection using MRI, to date there have been no studies that use a prospective 

randomized design for screening and measure survival as the endpoint. Most recently, 

Saadatmand and colleagues conducted the first randomized trial and showed that MR 

screening detected three times the incidence of invasive cancers than mammographic 

screening (24 vs 8), suggesting that many invasive cancers went undetected by 

mammogram (20). Time will tell if this increase in detection leads to an increase in 

survival.  

As a scientist I must argue that more information is better. If we, as a society, 

write off breast MRI on the basis of “overdiagnosis”, we are throwing away a wealth of 

data that could inform both researchers and clinicians. This knowledge can provide 

details, not only on who has cancer, but also on the characteristics and behavior of said 

cancer. Therefore, we should replace the word “overdiagnosis” with “misinterpretation”, 

and rather than focusing our energy on measuring what MRI has failed to do in breast 

cancer, consider what it can do in the future.  

The unrivaled sensitivity of MRI gives us the ability to detect every breast cancer 

that manifests, which then facilitates the opportunity to study every breast cancer with a 
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variety of tools. Moreover, with radiomics, deep learning, and the ever-broadening 

contrasts available with MRI (i.e. diffusion, elastography, etc.), not only can MRI detect 

these cancers, it can also be used as one of many tools to better characterize and 

understand them. Thus, rather than concede to overdiagnosis, the breast MRI field should 

aspire to understand these cancers and predict how/when they will grow and metastasize 

and how they will respond to various treatments. It is my hope that, with continuing 

advances, breast DWI will be one of many factors that contribute to this ability, 

positively affecting the detection, diagnosis, and treatment planning of all breast cancers, 

both those that are innocuous and those that may be fatal.  

Active Surveillance 

Overdiagnosis is also thought to persist in the context of mammographic screening, 

especially for non-invasive and low risk ductal carcinoma in situ (DCIS). Although it is 

estimated that only 20%-30% of DCIS will progress to invasive breast cancer, 97% of all 

DCIS is treated (21). This overtreatment is generally due to the lack of prognostic factors 

that accurately distinguish these harmless cancers from life-threatening disease (22). One 

suggested approach to decrease treatment of insignificant disease is active surveillance 

(AS). AS, sometimes called watchful waiting, refers to the intentional decision not to 

treat known disease while undergoing close monitoring, such that treatment will begin if 

tests indicate change.  

While AS has been an active area of research in prostate cancer, it is less often 

discussed for breast cancer treatment. In current practice, nearly all breast cancers are 

treated, either with surgery, radiotherapy, and/or systemic therapy. To date, there are no 

completed trials that have carefully compared AS with treatment options. However, some 

ongoing studies have recently started to address this gap in evidence, including the 

Comparison of Operative versus Monitoring and Endocrine Therapy (COMET) trial 

(NCT02926911), the Low Risk DCIS (LORD) study (NCT02492607), and the Low Risk 

DCIS (LORIS) trial (UKCRN study ID 16736) (21,22). Though MRI does not play a 

major role in these trials, it may find an important role in AS in the future, especially with 

further technological advancements and increased use in clinical trials. 

Epidemiologically, the high sensitivity of MRI can detect a wide range of cancers to 
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provide a larger view of the disease for research purposes. Varying MRI contrasts and 

quantitative methods may provide reliable prognostic factors that distinguish fatal 

cancers, guiding the decision to use AS in lieu of traditional treatment. Finally, MRI may 

provide a detailed view of the tumor’s appearance and characteristics to closely monitor 

change over the course of AS, potentially reducing the need for repetitive biopsies.  
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Chapter 2: Fundamentals of Diffusion Weighted Imaging  

Diffusion MRI, or diffusion weighted imaging (DWI), is an MRI technique that can be 

used to measure the diffusion of water molecules within tissue. In DWI, magnetic 

gradients are applied with varying amplitudes and times along different directions to 

encode the diffusion along that same direction. Because diffusion in biological tissues is 

restricted by things like macromolecules, cell walls, and fibers, the diffusion contrast can 

give insight of the microscopic environment in the tissue. DWI has been applied in MRI 

in many different ways using models of varying complexity, including diffusion tensor 

imaging (DTI), diffusion kurtosis imaging (DKI), intravoxel incoherent motion (IVIM), 

etc.  

2.1 The Basics of MRI  

A basic MRI sequence requires three parts, including 1) signal excitation paired with 

slice selection, 2) an echo formation paired with an analog to digital converter (ADC), 

and 3) spatial encoding.  

Very briefly, magnetic resonance imaging (MRI) uses a strong magnetic field 

combined with radiofrequency pulses and magnetic gradients to measure the dipole 

precession of the protons that typically belong to the Hydrogen of the water molecules in 

the human body. Because hydrogen molecules contain a single proton that is positively 

charged, when placed in a magnetic field the hydrogen molecules act like tiny dipoles 

that align with the main magnetic field, B0. This equilibrium state can be perturbed by a 

radiofrequency (RF) pulse. Typically, this RF pulse is played along with a slice selection 

gradient (Gslice) in Z; this gradient modulates the frequency precession based on each 

spin’s position in Z. The frequency of the RF pulse, along with Gslice, will determine the 

slice thickness and location.  

2.1.1 Image formation  

Echoes 
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Directly after the RF is applied the spins will be in phase but will immediately begin to 

dephase at a rate dependent on the tissue characteristics (called T2 decay), the field 

inhomogeneity (called T2’ decay), or a combination of both (called T2
* decay). Acquiring 

this signal is referred to as a free induction decay (FID). This FID is can be used in 

spectroscopy but is insufficient for the purposes of imaging. Thus, magnetic gradients 

and/or RF pulses are used to manipulate the spins, causing them to rephase and produce a 

secondary signal called an echo, which is measured for imaging. The type of echo formed 

will dictate the types of decay that are observed. The simplest imaging sequence employs 

a gradient echo, which can also be used for spatial encoding in the RO direction, shown 

in Figure 2.1.  

 

 

Figure 2.1 – A Simple Gradient Echo Sequence

The pulse sequence diagram (a) and the k-space trajectory of a gradient echo 

sequence. After the 90º excitation, an FID occurs with T2* relaxation. A prephase

gradient (orange) is used to quickly dephase the signal, followed by a readout 

gradient (red) that forms an echo before the signal fully relaxes according to T2*. This 

RO gradient achieves formation of a gradient echo at every position while also 

providing frequency encoding in x, traversing k-space according to the orange and 

red arrows (b). Importantly, the areas marked by * are equal. The PE gradient 

amplitude is modified with every TR to acquire a specified line in kPE (blue gradient 

and arrow). Black dots indicate sampling through the RO, consistent with the ADC.
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To form a gradient echo, a magnetic field gradient is played out on the frequency 

encoding axis. Prior to the readout, this gradient dephases the spins. An echo is formed as 

an equal and opposite gradient is played to rephase the spins, as shown in Figure 2.1a. In 

this case the signal decay caused by both the field inhomogeneity and the molecular 

interactions is not recovered and the signal is attenuated by T2
* and dependent on the time 

that has passed, or the echo time (TE).  

There are two other main types of echoes, which use RF pulses rather than 

magnetic gradients: Hahn spin echoes (SE) and stimulated echoes (STE) (Figure 2.2). For 

a spin echo, a secondary RF pulse is played along with a secondary slice select gradient 

to rotate the spins by 180º at time TE/2 so that they rephase at a time TE (see Figure 

2.2a); in this case dephasing caused by field inhomogeneity is accounted for so that true 

T2 decay is reflected in the signal. Finally, to form a stimulated echo, three excitation 

pulses are used consecutively with specific timing shown in Figure 2.2b. The time 

between the 2nd and 3rd excitations is called the mixing time (TM), during which the spins 

experience T1 decay but no effect from T2 decay.  

 

 

a TE/2

90°

RF/signal

TE/2

180°

b

90°

TE/2

90° 90°
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TE/2TM
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Figure 2.2 – Spin and Stimulated Echo Formation

a) Spin Echoes (SE) and b) Stimulated Echoes (STE) are two types of echoes that 

use RF pulses instead of gradients. Additional echoes are shown in faded blue. 

In SE, spins that experienced dephasing due to field inhomogeneity will be rephased 

by the 180º pulse, achieving T2 decay. TM refers to the mixing time, during which the 

spins experience T1 decay but not T2 decay. Note that magnetic gradients (omitted in 

figure) are necessary for spatial encoding.
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Spatial encoding and k-space 

Spatial encoding is achieved by playing magnetic field gradients in two dimensions. The 

RO gradient is played in x during the echo formation and measurement of the signal, 

providing frequency encoding. The PE gradient is applied in y prior to the echo 

formation, providing phase encoding.  

As phase encoding gradient (𝐺%&) is applied, the varying frequencies cause a 

phase difference between the neighboring spins, dependent on their position in y and the 

magnitude and duration of the gradient (𝑡). When the PE gradient is turned off, this phase 

difference is maintained throughout the formation of the echo. For example, the modular 

blue gradient in Figure 2.1 causes a phase separation between neighboring spins in y 

prior to the echo formation. A large gradient will cause a larger phase separation, probing 

high resolution information and filling the edges of k-space where high spatial 

frequencies are stored. Thus, the gradient relates to k-space according to: 𝑘) =
+,- ∫ 𝐺%&(𝑡)𝑑𝑡23 , where 𝛾 is the gyromagnetic ratio. 

 Similarly, a prephase gradient is played in x to jump to the RO edge of k-space 

according to 𝑘5 = +,- ∫ 𝐺67(𝑡)𝑑𝑡23 . During the echo formation, the RO gradient (𝐺67) 

continues to play, such that the spins’ frequencies are dependent on their position in x. 

This RO gradient supplies frequency encoding while simultaneously achieving a gradient 

echo at each position.  

2.1.2 Echo-planar imaging 

While the simple gradient echo sequence shown in Figure 2.1 contains all of the 

necessary parts to create an image, it is very inefficient, requiring an excitation for every 

line in k-space.  

One widely used strategy is called echo-planar imaging (EPI), shown in Figure 

2.3. EPI consists of a train of frequency-encoding gradients (GRO) that alternate in 

polarity to traverse back and forth through k-space (kRO) by forming gradient echoes. In 

order to step through the PE direction of k-space (kPE), each of these gradients is 

separated by an additional phase-encoding gradient, or ‘blip’.  
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EPI can be used as the readout strategy underlying either a gradient echo or spin 

echo. The main differences between the two are signal weighting, scan time, and use 

cases. GE-EPI creates T2
*-weighting in a very short scan time and is classically used for 

functional MRI scans in order to minimize the TR. The slower SE-EPI is typically used 

for DWI because the longer echo times allow for the addition of diffusion weighting 

gradients. While both GE-EPI and SE-EPI provide fast acquisition with relatively low 

power deposition, they are also associated with some characteristic challenges, including 

distortion, chemical shift displacement, and Nyquist ghosts.  

EPI relies on a series of gradient echoes under the envelope of either another 

gradient echo or a Hahn spin echo, which forms at the center kPE line (Figure 2.3b). Thus, 

any source of off-resonance (Δf) causes phase accumulation over the long echo spacing 

(tesp), i.e. time between two echoes, causing a geometric shift (ΔyPE) in the image domain 
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Figure 2.3 – Spin-Echo EPI

a) pulse sequence diagram and b) k-

space trajectory. RO gradients (orange) 

produce gradient echoes under an 

envelope of a Hahn spin echo. The 

prephase gradients (first PE and RO 

gradients in dim orange and gray) 

traverse to the corner of k-space. Colors 

correspond between (a) and (b). 
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along PE according to [Ref (23)]: ∆𝑦%& =	 :;<=>? 𝐹𝑂𝑉%& where Δf is measured in Hz and 

BWPE  refers to the effective bandwidth in the PE direction, i.e. 𝐵𝑊%& = E2FGH. Note that 

the effect in the RO direction is negligible because the RO bandwidth is large in EPI.  

Inhomogeneity in the B0 field is one major source of off resonance that causes 

geometric distortion, as shown in Figure 2.4 (green arrow). Another large source of off 

resonance is the chemical shift of fat. Because the protons within water and fat molecules 

experience different amounts of shielding, their resonance frequencies differ by about 3.5 

ppm, or ~440 Hz at 3 T. This also causes a shift by ΔyPE of the fat signal only, called 

chemical shift displacement (Figure 2.4, yellow arrows). Finally, due to the alternating 

polarity through the RO train, ghosting artifacts emerge in the presence of any gradient 

imperfections or eddy currents (Figure 2.4, red arrow). These artifacts will be explored 

further in subsequent sections. 

 

 

Distortion correction 

EPI uses a low acquisition bandwidth in the PE direction so that any off resonance during 

this time will accumulate and cause dephasing. One major source of off resonance is B0 

inhomogeneity that is caused by non-uniform magnetic susceptibility of tissues, eddy 

currents, respiration, and subject motion. Because this inhomogeneity is spatially varying, 

this phase accumulation produces geometric distortion in the PE direction. The shimming 

system used in this work allows for B0 corrections in the shape of spherical harmonics 

DWI (b = 0 s/mm2)
T1-weighted (post 

contrast) ADC map

Figure 2.4 – Common DWI artifacts in breast imaging

Example of clinically available breast DWI and ADC map based on ACRIN 6698 

protocol. A T1-weighted anatomical is provided for comparison. Nyquist ghosts (red 

arrow), B0 distortion (green arrow), and chemical shift (yellow arrows) are highlighted.
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(X, Y, Z, Z2, ZX, ZY, X2-Y2, and XY), which produces adequate B0 homogeneity in a 

sphere about the size of a human head at isocenter. However, the shimming available 

does not work as well for breast imaging due to the longer distance away from isocenter, 

non-spherical geometry, and close proximity to the lungs, demanding the need for 

retrospective distortion correction.  

FSL’s topup 

The Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software 

Library (FSL) provides software for analyzing fMRI, MRI, and DTI brain data, including 

topup (24–26) for retrospective correction of distortion in SE-EPI. Topup requires two 

images with opposite PE directions, and therefore equal and opposite distortions. It works 

by estimating the equal and opposite shift that would simultaneously result in both of the 

acquired images, from which a B0 map can be calculated. 

 

 

Fat suppression  

The typical breast anatomy, shown in Figure 2.5a, consists of glandular tissue (ducts and 

lobules), where most breast cancers start, surrounded by a layer of fatty tissue. However, 

breast anatomy, unlike many other organs, is very heterogeneous across the population, 

including the fat content of breast tissue. In the BI-RADS system, for example, 

radiologists classify each patient’s mammographic results base on the categories: almost 

entirely fatty (A), scattered areas of fibroglandular density (B), heterogeneously dense 
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Figure 2.5 – Signal from Adipose Tissue 

Breast anatomy (a) contains glandular tissue (ducts and lobules) surrounded by a 

layer of fatty tissue. The fat spectrum (b), which includes four peaks surrounding that 

of water, makes fat suppression difficult. Frequencies listed correspond to 3 Tesla. 
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(C), and extremely dense (D). This potentially large fat signal can be detrimental in EPI, 

due to chemical shift artifact, difficult B0 shimming due to varying magnetic 

susceptibility, and phase shifts that disrupt assumptions used in things like ghost and 

distortion correction (see Experiment 3 in Section 3.3.1). Furthermore, residual fat signal 

can bias ADC and other quantitative measures. Thus, high quality breast DWI is 

dependent on robust fat suppression across a heterogeneous population. Fat suppression 

can be challenging, however, as there are 4 resonance peaks, that span either side of that 

of water, as shown in Figure 2.5b.  

 

 

 There are several approaches for fat suppression. Siemens commonly uses 

spectral selection attenuated inversion recovery (SPAIR) in combination with section-

select gradient reversal (27). SPAIR applies a spectrally selective 180° RF pulse to invert 

fat only (Figure 2.6). Subsequent excitation is delayed based on the T1 of fat so that the 

Mz = 0 at the time of the RF pulse, essentially nulling the fat signal for the rest of the 

acquisition. The gradient reversal strategy is best described in Figure 2.6b. The slice-

select gradient is reversed during the refocusing pulse, which shifts the slice of fat that 

experiences the 180° pulse. This reduces the amount of fat that is refocused based on the 

Figure 2.6 – Common fat suppression

SPAIR (a) uses a spectrally selective pulse to excite fat and applies the excitation 

when the fat signal is nulled based on the T1 relaxation. This delay adds some scan 

time. In gradient reversal (b) the slice select gradient is reversed during the refocusing 

pulse so that the chemical shift displacement occurs in the opposite direction. Only 

the fat region of overlap (purple) is refocused. 
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two slice profiles of fat but does not fully suppress the fat signal, as there remains a 

region of overlap between the two slices. Moreover, SPAIR’s spectrally selective pulse is 

sensitive to B0 and B1 inhomogeneity, so its performance is often insufficient for the 

purpose of breast DWI.  

2.2 Accelerated Imaging 

Another way to reduce geometric distortion, chemical shift artifact, and T2
* signal loss is 

to increase the PE acquisition bandwidth, i.e. to speed up the acquisition in the PE 

direction. Additionally, one of the major limitations of MRI is the long scan times 

required to fill k-space, which contribute to the high cost of MRI scans, cause patient 

discomfort, and lead to image artifacts from breathing and other motion that occurs 

during scanning. The speed at which k-space is acquired, however, is limited because the 

sampling in k-space, ∆𝑘, must be at least as small as 
EIJKLFMN to acquire an imaging without 

aliasing. In other words, 
E∆O corresponds to the FOV, which must include the full object in 

image space. Failure to satisfy this sampling criteria, known as the Nyquist sampling 

theorem, causes aliasing in the image domain as shown in Figure 2.7.  

 

 

In the readout direction the sampling rate is fast as it depends primarily on the 

ADC converter. In contrast, every additional sample in the phase encoding direction 

requires an additional phase encoding gradient and echo paired with a readout. Thus, 

although the scan time is defined by many different factors, it is approximately 

Ideal Image

R = 2 Image
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Figure 2.7 – Aliasing in the Image Domain

A simulated Shepp Logan phantom with R = 2 undersampling in PE. 



 21 

proportional to the number of lines required in 𝑘), 𝑁 = ,OQ,STU∆OQ . Several tricks can be 

used to reduce the number of lines in 𝑘) to minimize the scan time, but each corresponds 

to a tradeoff. Decreasing 𝑘),VW5 reduces the resolution in y; reduced FOV imaging 

requires 2D spatially selective RF pulse, which can be long and sensitive to B1 

inhomogeneity; and increasing ∆𝑘) causes aliasing.  

The concept of parallel imaging was introduced in 1988 by Hutchinson and Raff, 

who suggested using a large number of receiver coils in place of phase encoding. The 

idea was later refined and demonstrated in k-space by Sodickson and Manning in 1997, 

which they named SiMultaneous Acquisition of Spatial Harmonics (SMASH) (28), and 

in the image domain by Pruessman et al. in 1999 called SENSitivity Encoding (SENSE) 

(29). Parallel imaging has since been largely expanded, incorporating many types of 

regularization, compressed sensing, machine learning etc. In current practice, most 

reconstruction is based on SENSE or GeneRalized Autocalibrating Partially Parallel 

Acquisitions (GRAPPA), a more recent k-space based method (30). While there are many 

variations of PI reconstruction, they are all based on the concept that each channel in a 

receiver array is sensitive to a unique area in space, known as the sensitivity profile. This 

spatial encoding, learned using the sensitivity profiles, is combined with information 

within the gradient encoding to reconstruct an alias-free image from undersampled data.  

2.2.1 Parallel Imaging 

Formulation in the image domain: SENSE  

Let’s consider the signal equation, 𝑠Y𝑘5 , 𝑘)Z = ∫𝑚(𝑥, 𝑦)𝑒^_,-YOU5`OQ)Z𝑑𝑥𝑑𝑦, which 

describes the signal at a given point in k-space (𝑘5 , 𝑘)) for an image, 𝑚, ignoring noise. 

For simplicity assume a constant gradient, 𝐺5 over time 𝑡; we can say 𝑘5 =
∫ 𝐺5(𝜏)𝑑𝜏 = 𝐺5𝑡23 	and, similarly, 𝑘) = 𝐺)𝑡. Then Y𝑘5 , 𝑘)Z =
∫𝑚(𝑥, 𝑦)𝑒^_,-YbU5`bQ)Z2𝑑𝑥𝑑𝑦. For each coil, 𝑗, the actual signal received is determined 

by a combination of its sensitivity profile, 𝑆e(𝑥, 𝑦), the object, and the gradient encoding 

as: Y𝑘5 , 𝑘)Z = ∫ 𝑆e(𝑥, 𝑦)𝑚(𝑥, 𝑦)𝑒^_,-YbU5`bQ)Z2𝑑𝑥𝑑𝑦.  
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Now consider a simple system with 2 surface coils and an undersampling or 

reduction factor of 𝑅 = 2, as shown in Figure 2.8. The aliased pixel is a linear 

combination of two pixels in k-space, we’ll call A and B. The signal intensity (𝐼) in Coil 

1 can be given by 𝐼E_Wj_Wk = 𝑆El𝐴 + 𝑆E<𝐵 and in Coil 2: 𝐼,_Wj_Wk = 𝑆,l𝐴 + 𝑆,<𝐵. If the 

sensitivity profiles can be measured, we have two equations with two unknowns, 𝐴 and 

𝐵, and it is possible to solve for the unaliased image. This example can be generalized for 

any number of coils (𝑁op) and undersampling factor of 𝑅 < 𝑁op, where the signal in a 

given coil is described as 𝐼e_Wj_Wk = ∑ 𝑆_e𝑥6_sE , or more compactly in matrix notation, as:  

 𝐼 = 𝑆 ∙ 𝑥⃗ [2.1] 

where 𝑥 represents the R pixels of the unaliased image and the matrix S contains the 

sensitivity profiles for each coil at each aliased position. Thus, it is possible to solve for 

the unaliased image by 𝑥⃗ = 𝑆^E ∙ 𝐼. More generally, if the inverse of 𝑆 does not exist,  

 𝑥⃗ = (𝑆v𝑆)^E𝑆v ∙ 𝐼 [2.2] 

where 𝐻 indicates the transposed complex conjugate. 
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Figure 2.8 – SENSE Formulation

Shepp-Logan phantom simulated for 2 coils (blue) and R = 2. For each coil, each 

aliased pixel (orange) can be described as a linear combination of R pixels (A and B) 

weighted by that coil’s sensitivity profiles.  
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Formulation in k-space: GRAPPA  

Although Parallel Imaging is more intuitive in image space, the same principles apply in 

k-space. Specifically, Equation 2.1 can be written as  

 𝐼x = 𝑆	y⨂	𝑥{ [2.3] 

based on the Fourier principle that multiplication in the image domain corresponds to 

convolution in frequency space, where the hat ( y ) denotes the k-space domain. Here, the 

sensitivity profiles are in the form of weights or kernels, and the convolution is done 

through k-space.  

 GRAPPA is based on the concept that an unacquired line in k-space, 𝑚, for a 

given channel, 𝑗, can be represented as a linear combination of the surrounding points of 

k-space, 𝑏 steps away, of all the other channels, 𝑙. In equation form (30): 

 𝐼eY𝑘) −𝑚∆𝑘)Z =� � 𝑆(𝑗, 𝑏, 𝑙, 𝑚)𝑥Y𝑘) − 𝑏𝑅∆𝑘)Z
�Q�U
�s3

���
jsE

 [2.4] 

In practice, the number of blocks can be chosen as 𝑁� < 𝑁)𝑁5.  

Reference data 

The previous discussion assumed that 𝑆(𝑥, 𝑦) or 𝑆(𝑗, 𝑏, 𝑙, 𝑚) is known. In practice, the 

sensitivity profiles or k-space weights need to be estimated from reference data that is 

fully sampled. In image space, the sensitivity profiles can simply be estimated by 

comparing the signal magnitude from each channel to the signal in a coil-combined fully 

sampled image. In k-space, the weights are calculated by solving equation 2.4, where the 

left-hand side is known. An autocalibration scan (ACS), typically acquired with low 

resolution, is used to fill in 𝐼e above. Thus,  

 𝐼elo�Y𝑘) −𝑚∆𝑘)Z =�𝑆jV𝐼jlo�(𝑘))
���
jsE

 [2.5] 

Equation 2.5 is fit across many kernels throughout the ACS lines to estimate the set of 

weights 𝑆(𝑗, 𝑏, 𝑙, 𝑚). 
Noise in parallel imaging  



 24 

Parallel imaging affects the SNR in two distinct ways. First, the theoretical SNR of an 

image is proportional to the size of a voxel and the square root of the total sampling time, 

i.e.  

 𝑆𝑁𝑅 ∝ 	∆𝑧 𝐹𝑂𝑉5𝑁5 𝐹𝑂𝑉)𝑁) �𝑁𝐸𝑋	𝑁) 𝑁5𝐵𝑊��� 	 [2.6] 

where ∆𝑧 is the slice thickness, 𝑁𝐸𝑋 is the number of excitations or averages, and 𝐵𝑊��� 
is the receiver bandwidth. In parallel imaging the number of points acquired in the PE 

direction, 𝑁), is reduced by a factor of R (31). If total scan time is not limited, this 

reduction can be mitigated by a corresponding number of averages.  

 Additionally, there is an SNR cost of acceleration that is dependent on the 

geometry of the coils with respect to the object. The previous sections ignored noise and 

assumed that the sensitivity profiles were fully unique to each coil. In reality, the coil 

sensitivity maps contain noise and overlap with one another in some regions, which 

reduces the ability to solve the system of equations. This reduces the SNR by the 

geometry factor, g, which is spatially varying because it measures the correlation between 

coils. Therefore, the overall SNR of an accelerated image is 𝑆𝑁𝑅W���j = ��6����√6�(5,)), where 

𝑔(𝑥, 𝑦) was formulated in the seminal SENSE paper as 𝑔5,) =
�[(𝐼vΨ^E𝐼)^E]5,)[𝐼vΨ^E𝐼]5,), where Ψ is the sampling noise matrix (29). Importantly, 

𝑔(𝑥, 𝑦) > 1, always.  

2.2.2 Simultaneous multislice imaging  

The parallel imaging discussed to this point is limited to the phase encoding direction. 

While it can be applied along two axes in 3D imaging, in 2D imaging, only one of the 

three directions can be accelerated with SENSE, GRAPPA etc. It is also limited by the 

number of receiver coils and the distinction between sensitivity profiles in the PE 

direction. Thus, it is desirable to extend the concept into the slice encoding direction. 

One can take advantage of the varying coil sensitivities in two different directions 

through space, and greatly reduce scan time by reducing the number of slice excitations 

needed. Simultaneous multislice (SMS) imaging, alternatively known as multiband (MB) 
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imaging, is an acceleration technique similar to that described in the PE direction. While 

the concept was proposed in 1988 (32), it wasn’t until parallel imaging saw major 

advancements that SMS was practically introduced in a way that sped up acquisition by 

Larkman et al. in 2001 (33).  

The concept and reconstruction of SMS is very similar to that of acceleration 

techniques in the PE direction, with a few important distinctions. In SMS imaging, RF 

pulses are used to excite several slices simultaneously (Figure 2.9). As in PE acceleration, 

the aliased image can be described as a superposition of slices of the ideal image 

modulated by the coil sensitivity profiles, which allows for unaliasing of the image using 

matrix inversion to solve the system of equations. Like in-plane undersampling, the 

sensitivity profiles or kernel weights are estimated based on a fully sampled reference 

dataset, referred to as the single band (SB) reference. While in-plane undersampling 

reduces the amount of data acquired in PE, by R, SMS still acquires a full set of data for 

each slice. Thus, SMS does not affect the echo spacing or the number of lines acquired, 

and therefore does not achieve reduced distortion from phase accumulation as PE 

undersampling does. However, it also does not suffer from a √𝑅 reduction in SNR. 

Moreover, SMS requires some distinct considerations for slice excitation.  

 

 

 In typical 2D imaging, a finite slice is excited using a specific RF pulse in 

conjunction with a slice select gradient, as shown in Figure 2.9. The RF pulse can be 

described through time as 𝑅𝐹(𝑡) = 𝐴(𝑡)𝑃(𝑡), where the amplitude 𝐴(𝑡) determines the 

90o Receiver coils
MB = 2 

GSlice

RF

Courtesy of Dr. Patrick Bolan

Figure 2.9 – Simultaneous Multislice (SMS) Example for MB = 2

Spectrally selective excitation pulse excites two slices, causing aliasing in the slice 

direction. Sensitivity profiles are used to separate slices. 
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slice profile and 𝑃(𝑡) describes a phase according to: 𝑃(𝑡) = 𝑒_∆�2`�, where ∆𝜔 

determines the slice position and 𝜑 determines the phase at the echo. In SMS, various RF 

pulses can be added together to excite an arbitrary number of slices, which is referred to 

as 𝑀𝐵, or the multiband factor. The RF pulse becomes: 

 𝑅𝐹���(𝑡) = 𝐴 (𝑡)�𝑒_∆�¡2`�¡�<
 sE

 [2.7] 

where 𝐴 (𝑡) represents an arbitrary slice profile that can vary based on the slice and 

transmit channels to improve sensitivity to B1 inhomogeneity with parallel transmission.  

Challenges of SMS  

The main issue that SMS faces is the increased power demands with increasing 

RF pulses. The desired excitation in SMS often requires RF pulses that exceed the peak 

power abilities of the amplifier or increase the total power deposition beyond safety 

limitations of the specific absorption rate (SAR). To reduce the power requirement, one 

can increase the duration of the RF pulse. However, this can negatively impact the 

sequence timing, worsen the sensitivity to off-resonance, and increase the effect of T2
* 

decay (34). Finally, SMS reconstruction faces a spatially varying increase in noise 

according the g-factor, as described in Section 2.2.1.  

CAIPIRINHA 

One major development in SMS imaging is a method called Controlled Aliasing in 

Parallel Imaging Results in Higher Acceleration (CAIPIRINHA). CAIPIRINHA was 

developed to improve g-factors in Parallel Imaging by separating the aliased images in 

space. Similarly, with SMS imaging, CAIPIRINHA involves shifting the slices to reduce 

the overlap between slices, as shown in Figure 2.10. The geometry can be modified in 

order to increase the variation in sensitivity profiles within the PE direction and improve 

the condition of the system of equations, potentially improving image quality and 

allowing for higher acceleration factors (35). 
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One easy way to shift the slices relies on the Fourier shift theorem, in which a 

phase ramp in k-space corresponds to a shift in the image domain. In terms of the signal 

equation, a shift of ∆𝑦 in the image domain can be described by:  

 𝑀(𝑥, 𝑦 − Δ𝑦) = £𝑚Y𝑘5 , 𝑘)Z𝑒`_,-(OU5`OQ))𝑑𝑘5𝑑𝑘) ∙ 𝑒^_∆)OQ [2.8] 

For example, in a simple case imaging the brain with MB = 2, to shift the slice by ∆𝑦 =
¤7¥Q, , the phase ramp corresponds to 

,-,  per ∆𝑘), which is equivalent to alternating the 

phase by 𝜋 between every line because of the periodicity in k-space, as shown in Figure 

2.10.  

 The original formation of CAIPIRINHA is not compatible with EPI in which all 

of the phase encoding lines are read out after a single RF excitation, therefore not 

allowing for a phase modulation between lines. A more recent strategy, called blipped-

CAIPI, applies small gradients in the slice encoding direction at the same time of the PE 

blips for the EPI readout. These gradient “blips” add a phase offset to the given lines of 

k-space, which is rewinded using a blip of opposite polarity (36).  

2.3 Diffusion Methods 

2.3.1 Diffusion encoding 

The purpose of diffusion encoding is to modify the image signal based on the rate of 

diffusion of the water molecules within the tissue. Classically, diffusion weighting is 
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Modified from Breuer FA, et al. 2005. 
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Figure 2.10 – CAIPIRINHA

Modulating the phase of every other line causes a FOV/2 phase shift.
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achieved using a Stejskal-Tanner diffusion sequence, also called monopolar diffusion, 

that is incorporated into an imaging sequence prior to the readout. In a Stejskal-Tanner 

diffusion sequence, following the excitation, a pair of equal diffusion gradients are played 

surrounding a 180º refocusing pulse (Figure 2.11a). During the first gradient, the spins 

dephase based on their position in the direction of the diffusion gradient, and magnitude 

and duration of the gradient, 𝐺§_;; and 𝛿. With the 180º pulse, the direction of the spins’ 

precession is flipped so that a 2nd gradient, which is equal to the first, will rephase the 

stationary spins. However, spins that experience motion between the two gradients will 

experience unequal magnetic fields before and after the 180º pulse. Thus, these mobile 

spins will not fully rephase causing signal loss based on the rate of diffusion and the 

strength and timing of the diffusion weighting. 

 

 

For a monopolar diffusion scheme, the diffusion weighting is described by the b-

value according to: 𝑏 = 𝛾,𝐺§_;;,𝛿, ©∆ − ª«¬ where ∆ is the separation between the 

gradient pair and 𝛾 is the gyromagnetic ratio of Hydrogen, in this case. The diffusion 
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Figure 2.11 – Diffusion Encoding

a) Stejskal-Tanner (monopolar) diffusion sequence using spin echo. GDiff can be 

applied on any combination of spatial axes to measure directional diffusion. Spins of 

stationary water molecules fully refocus. Spins of moving water molecules experience 

unequal gradients, reducing the signal (green). The magnitude of GDiff, δ, and Δ

determine the diffusion weighting.

b) Bipolar diffusion sequence, which reduces eddy current effects but requires longer 

TE and spoilers (not shown). The b-value can be calculated by considering each pair 

of diffusion gradients to be like a single diffusion gradient in the monopolar scheme. 

Thus, Δ relates to Δeff and δeff = δ1 + δ2 = δ3 + δ4.
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gradient can be played in any combination of x, y, and z to probe the diffusion in any 

direction on a sphere.  

 While monopolar diffusion allows for a short TE, the use of strong gradient pulses 

can create eddy currents that causes distortion in the PE direction of the image that is 

inconsistent across b-values and diffusion directions. An alternative method, called 

bipolar diffusion, uses a pair of refocusing pulses and two pairs of diffusion gradients to 

reduce these gradient-induced eddy currents. In the bipolar diffusion scheme, shown in 

Figure 2.11b, the diffusion gradients are played as two bipolar pairs (37). The reversed 

gradient will induce nearly equal and opposite eddy currents that cancel out those 

generated by the first gradient, thus reducing the eddy current effects in the echo. The use 

of two refocusing pulses, however, increases the power deposition and requires a much 

longer echo time, which both reduce SNR. Additionally, the second refocusing pulse can 

illicit complicated echo pathways that requiring additional spoiling gradients.  

2.3.2 Standard SE-EPI 

DWI is most commonly acquired using single-shot (SS) spin-echo echo-planar imaging 

(SE-EPI), combining the standard SE-EPI scheme (Figure 2.3) with a diffusion encoding 

scheme around the refocusing pulses (Figure 2.11). SE provides a long enough echo time 

to incorporate diffusion gradients, and the fast acquisition speed of EPI facilitates the 

measurement of a wide range of b-values and diffusion directions (i.e. the axis chosen for 

GDiff) within a reasonable scan time. Additionally, because SS SE-EPI acquires a full k-

space in one shot, it does not suffer from phase differences between the TRs, which are 

caused by even small movement during the diffusion gradients. However, SE-EPI 

produces DWI of limited spatial resolution and quality as discussed earlier. SE-EPI has 

been advanced in several ways to mitigate these challenges. Other less common methods 

have also been applied to DWI, each with its own tradeoffs.   

2.3.3 Advanced SE-EPI 

Multishot EPI 
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In single shot SE-EPI the resolution depends on the echo train length, which is limited by 

the T2 signal decay of the spin echo. Additionally, any B0 inhomogeneity causes phase 

accrual over every line of k-space and results in often severe geometric distortion in the 

PE direction. One obvious way to extend SE-EPI and reduce these problems is to acquire 

the full k-space across several TRs rather than in a single shot. This method is referred to 

as multishot EPI (MS-EPI) and can reach a high spatial resolution with geometric 

distortion reduced by a factor equal to the number of shots used (Nshot) but also increases 

the scan time by a factor of ~Nshot. 

 As previously mentioned, each shot will have its own spatially varying phase 

according to the motion that occurs during the diffusion gradients, including small body 

movement, respiration, cardiac motion, or even pulsation of the CSF. If left uncorrected, 

the shot-to-shot phase differences will manifest as a ghosting artifact in the image. Many 

phase correction methods have been proposed throughout the literature. The most 

straightforward approach acquires a 2D navigator as a second echo after the acquisition 

that is used to estimate and correct the phase difference. MUSE (multiplexed sensitivity-

encoding) is a more recent navigator-free method that estimates the phase map using 

parallel imaging techniques, and other methods iteratively estimate the phase based on a 

low rank, often including deep-learning (38–42).  

 In breast imaging, respiratory motion contributes to large phase errors between 

shots. Thus, MS-EPI is challenging in breast DWI and rarely used, especially as large 

acceleration factors in-plane can have the same benefit on distortion without the large 

increase in time and circumventing shot to shot differences. Hu et al. applied MS-EPI in 

breast with MUSE, which is an extension of SENSE reconstruction. They found that MS-

EPI improved lesion conspicuity and perceived image sharpness. However, they did not 

realize an improvement in distortion, as the number of shots was equal to the 

undersampling factor in SS-EPI, and they found that MS-EPI increased the image artifact 

(43). Hu et al. also proposed an alternative phase correction called locally low-rank 

(LLR) for severe motion (44).  

Readout-segmented EPI 
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Readout-segmented (RS) EPI (called RESOLVE by Siemens) is another multishot 

approach that segments the k-space in the RO direction rather than through the PE 

direction (45). By segmenting in the RO direction with Nshot, the echo time can 

potentially be reduced by a factor of about Nshot, which reduces the geometric shift and 

image blurring from T2
* decay, and TE accordingly. As segmenting is done in the RO 

direction, RS-EPI is also a good candidate for in-plane undersampling in the PE 

direction, which can further reduce geometric distortion and T2
* decay (46).  

  Similar to other multishot techniques, RS-EPI requires more excitations and 

therefore suffers from longer scan time. Moreover, it is subject to non-linear phase errors 

that are caused by movement throughout the diffusion gradient that varies across shots. 

These phase differences are generally corrected using a 2D navigator that is required with 

every shot, further increasing the scan time. The navigator is used to estimate and remove 

the shot-specific phase before combining the shots into a full k-space. However, if the 

motion is severe, the phase errors may not be readily estimated from the navigator as the 

center of k-space may shift outside the navigator region (46).  

 As a widely available product diffusion sequence, RS-EPI has been used for 

breast DWI, often with high spatial resolution. Several reports suggest that RS-EPI is 

superior to SS-EPI in diagnostic performance (47–50). Baltzer et al. even showed that the 

diagnostic performance of RS-EPI was comparable to that of DCE-MRI, suggesting RS-

ESPI as a non-contrast alternative (51). 

Reduced-FOV 

In reduced-FOV, or rFOV, RF pulses are applied in a way that excites a specified FOV, 

generally smaller than the size of the actual object in the PE direction, followed by a 

typical EPI readout. A smaller FOV corresponds to relaxed sampling requirements 

without the use of PI techniques, as ∆𝑘 = �¤7¥, which reduces geometric distortion and 

T2
* blurring. There are three main strategies for excitation, including inner volume 

imaging, outer volume suppression, and 2D spatially selective RF pulses for localized 

excitation followed by a standard slice-selective refocusing pulse (46). Unfortunately, 
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rFOV’s increased demands on RF pulses can cause increases in SAR, scan time, and 

limitations on slice selection (46).  

 Reduced-FOV imaging is a promising candidate for an advanced SE-EPI 

acquisition in breast imaging, typically acquired axially with PE in the HF direction. 

Results suggest that using rFOV to achieve a higher resolution helps to better 

characterize the heterogeneity of tumors and improves the measurement of low b-values 

characteristic of malignancies (52–54). 

2.3.4 Alternative methods 

Many other methods have been explored to overcome the disadvantages of SE-EPI. 

These methods are often applied to brain imaging initially and are applied to body 

imaging much less frequently due to the additional challenges of imaging the body.  

Turbo spin-echo 

In single shot turbo spin-echo (TSE) or fast spin-echo (FSE), which is also often called 

HASTE, an RF refocusing pulse is added between every PE line of k-space. Compared to 

standard SE-EPI, TSE has little to no geometric distortion in the PE direction because the 

RF pulse refocuses the phase of every readout. However, playing the refocusing pulse 

requires a substantial amount of time, which increases the overall scan time. Moreover, it 

is difficult to satisfy the Carr-Purcell-Meiboom-Gill (CPMG) condition of the refocusing 

pulses because the phase accrued is spatially varying and depends on the motion 

occurring during the diffusion gradients. One popular strategy to overcome this challenge 

is to use gradients to crush the non-CPMG component of the signal, but this greatly 

reduces the SNR.  

 Another variation of a TSE sequence combines the RF refocusing pulses with a 

short EPI-like RO, trading off the advantages and disadvantages of both SE-EPI and 

TSE. This method is called gradient- and spin-echo (GRASE) and involves adding RF 

refocusing pulses between groups of readouts rather than for every line (55).  

 TSE can also be applied in a non-cartesian way in a method called periodically 

rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) (56). 



 33 

PROPELLER is a multishot technique that covers k-space with a set of “blades” that each 

pass through the center of k-space to allow for self-navigating in post processing. This 

method still faces the challenges of the non-CPMG component but is free of geometric 

distortion and can reach high spatial resolutions provided the blades are wide enough for 

sufficient phase correction between shots.  

Steady-state free precession  

In steady-state free precession (SSFP), the signal is rapidly excited with a small flip angle 

with a TR < T1, such that the signal does not fully recover between excitations. Although 

the small flip angle causes a low signal, the sequence is so efficient that it allows for large 

amounts of data to be acquired in a short period of time, which salvages the SNR (57). 

However, DW-SSFP faces two major challenges. As a 3D sequence, SSFP requires 

segmentation in order to fully sample k-space, which subjects it to phase errors between 

shots as described above. Additionally, SSFP creates a complicated combination of spin 

and stimulated echo coherence pathways, which creates a signal weight that is highly 

dependent upon T1, T2, and the flip angle. Thus, defining diffusion weights (or b-values) 

becomes complicated and requires measurement of T1, T2, and B1 maps in order to 

achieve ADC quantification (57).  

 Unbalanced SSFP was first applied to breast imaging. in 2014 by Granlund et al. 

using a double-echo steady-state (DESS) sequence (58). They achieved full coverage 

diffusion weighted images within 3 minutes and 35 seconds with higher nominal 

resolution than SE-EPI acquired in a longer scan time (5:41). They reported that 

radiologists preferred DESS images compared to standard DWI with respect to resolution 

and level of distortion.   

Spatiotemporal encoding  

Spatiotemporal encoding (SPEN) is a single shot imaging method that progressively 

excites and refocuses the signal through space using frequency-swept pulses with 

quadratic phase played in the presence of a magnetic gradient. Three inherent advantages 

of SPEN that make it a good candidate for DWI are 1) it is insensitive to field 

inhomogeneities; 2) it achieves true T2 weighting, and thus does not suffer from T2
* 
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blurring; and 3) it is robust against chemical shifts. However, the additional encoding 

gradient in SPEN causes additional weighting that leads to spatially varying b-values.  

 Solomon et al. proposed SPEN for breast imaging achieved ADC maps with 

markedly lower distortion and ghosting artifact compared to SE-EPI, without 

significantly affecting the ADC measurement. However, the frequency-swept inversion 

pulse caused high SAR deposition, which limited the number of slices that could be 

acquired (59,60).  

2.4 Diffusion Models 

2.4.1 ADC and cellularity 

The most basic DWI model measures the apparent diffusion coefficient (ADC), which 

captures both the pure Brownian diffusion of the water within the tissue along with 

pseudo-diffusion, e.g. perfusion (61). To measure the ADC, diffusion weighting is 

integrated into an imaging sequence as described in Section 2.3.1. This diffusion 

weighting, described by the b-value (𝑏), affect the signal intensity (𝑆) based on the ADC 

of the water molecules within the tissue according to (62): 

 𝑆(𝑏) = S3 exp(−𝑏 ∗ 𝐴𝐷𝐶) [2.9] 

where 𝑆3 is the signal intensity in the absence of a diffusion gradient. By acquiring a 

series of images with at least two b-values, a quantitative ADC value can be calculated on 

a pixel-by-pixel basis by solving Equation 2.9 according to the signal attenuation 

between the images. When using the ADC, it is typically assumed that the diffusion is 

isotropic. Therefore, if several averages are acquired, the diffusion gradients are often 

applied in three orthogonal directions and averaged together to get a directionless ADC 

value.  

This basic DWI has clinical value in various fields. In brain and body imaging, 

low ADC values are associated with malignancies, and increasing ADC values serve as 

an early indication of treatment response prior to conventional anatomical measurements 

(63). In neuroimaging, the high-b-value images are often used to assess damage caused 

by acute ischemic stroke.  
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 While the ADC is the most widely used diffusion-based metric used in breast 

imaging due to its simplicity and clinical usefulness, true diffusion is not always 

isotropic, gaussian, and fully modeled with the monoexponential shown in Equation 2.9. 

Many other models have been established that attempt to include these other 

complexities, like non-gaussian diffusion, perfusion, directionally dependent restriction 

of diffusion, etc.  

2.4.2 DTI and anisotropy 

While ADC maps assume isotropic diffusion (or at least ignore anisotropy by averaging 

over several diffusion directions), diffusion tensor imaging (DTI) models 3D Gaussian 

free diffusion. Rather than measure a scalar value for diffusion, in DTI diffusion is 

described by a directional apparent diffusion tensor, 𝑫. Thus, equation 2.9 can be 

expanded as 𝑆(𝑏) = 𝑆3exp	 ©−Y𝑏55𝐷55 + 2𝑏5)𝐷5) + 2𝑏5µ𝐷5µ + 𝑏))𝐷)) + 2𝑏)µ𝐷)µ +
𝑏µµ𝐷µµZ¬, where 𝑏_e and 𝐷_e are components of the matrices 𝒃 and 𝑫, respectively. To 

solve for 𝑫, one must apply diffusion gradients along at least six directions (64).  

 It is then convenient to define several parameters which will describe the 

diffusion based on the diffusion tensor, 𝑫, that are independent of the orientations of the 

laboratory frame, the object in the scanner, and 𝒃. The diffusion can be characterized by 

ellipsoids where the surface represents the average distance traveled by a water molecule. 

The ellipsoids are described with three principle directions, 𝜀5¸, 𝜀)¸, and 𝜀µ¸, which are 

coincident with the eigenvectors of 𝑫, 𝜆5¸, 𝜆)¸, and 𝜆µ¸, where the laboratory frame, 𝑥, 𝑦, 

and 𝑧 has been rotated to 𝑥′, 𝑦′, and 𝑧′ to align with the principle directions of diffusion. 

These eigenvectors are typically sorted by size and described as 𝜆E, 𝜆,, and 𝜆«.  

Another relevant quantity is the overall size of the ellipsoid, which is proportional 

to the mean diffusivity, 〈𝐷〉 = E« Y𝐷55 + 𝐷)) + 𝐷µµZ = E« (𝜆E + 𝜆, + 𝜆«). While 〈𝐷〉 is 

related to ADC, ADC assumes isotropic diffusion, whereas 𝑫 is more general and is 

independent of direction. For example, changes in 〈𝐷〉 should truly reflect a change in the 

overall diffusivity of the tissue, while a change in the ADC value could be caused by 

changing the diffusion direction. 



 36 

The shape of the ellipsoid is also important and is often measured in terms of 

anisotropy (65), which characterizes the amount of which the ellipsoid is non-spherical. 

The Fractional anisotropy (FA) is defined as: 

 𝐹𝐴 = 3√2 �𝑉𝑎𝑟(𝜆)
À𝜆E, + 𝜆,, + 𝜆«,	

 [2.10] 

and is a measure between 0 and 1 that represents the fraction of diffusion that is 

anisotropic, as its name suggests. The FA is often displayed in a colormap where the 

color indicates the direction of the largest eigenvalue. One extension of DTI is fiber 

tractography, in which axonal maps are inferred based on the main direction of diffusion 

from voxel to voxel in a deterministic or probabilistic way.  

DTI is frequently used in neuroimaging for both research and clinical 

applications. Axonal pathways can help with surgical planning prior to brain tumor 

resection (66). In multiple sclerosis (MS) patients, MS lesions have been found to have 

increased mean diffusivity and decreased fractional anisotropy, which correspond to 

disruption to the axons and myelin (66). Other clinical applications include Alzheimer 

disease, diffusion axonal injury, and epilepsy.  

DTI is much less commonly used in breast imaging. Some groups have suggested 

that the mammary ductal network and surrounding stroma are characterized by 

anisotropy, which may be disrupted by malignancy (67). Some studies suggest that FA or 

other combinations of the eigenvalues can be used to differentiate between benign and 

malignant tissue (68,69). However, results are conflicting and the use of DTI in breast 

imaging remains controversial and requires further investigation. 

2.4.3 DKI and non-Gaussian diffusion 

The monoexponential diffusion model considered in Equation 2.9 assumes a Gaussian 

distribution of diffusion, based on the physics of free diffusion. At high b-values the 

diffusion has been shown to become less Gaussian, requiring a more complex model to 

accurately fit the data. Diffusion kurtosis imaging (DKI) is an extension of the DWI 

model that measures the non-Gaussian component according to: 𝑆(𝑏) = 𝑆3 exp ©−𝑏 ∗
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𝐷WÁÁ + EÂ 𝑏, ∗ 𝐷WÁÁ, ∗ 𝐾WÁÁ¬. 𝐷WÁÁ is the diffusion coefficient, which is similar to 𝐴𝐷𝐶 

that has been corrected for the non-Gaussian component. 𝐾WÁÁ measures the apparent 

diffusional kurtosis, quantifying the non-Gaussian component, or in other words, how 

peaked the distribution is.   

 The underlying biophysical principles that determine 𝐴𝐷𝐶 and 𝐾WÁÁ, alike, are 

not fully understood. The most accepted hypothesis suggests that at low b-values (𝑏 <
1000	𝑠/𝑚𝑚,), ADC measures the diffusion in extracellular space and thus reflects cell 

density (70). 𝐾WÁÁ is thought to represent the interaction between the water with cell 

membranes and the diffusion in the intracellular space (70), which may cause increased 

kurtosis in irregular and heterogeneous environments like malignancies (71,72). Thus, 

DKI has been applied in breast imaging for classifying benign and malignant breast 

lesions and been associated with histologic grade (67). However, DKI proves challenging 

in breast imaging as it requires high b-values (b ~ 1000-2000 s/mm2), which inherently 

limits the SNR.  

2.4.4 IVIM and perfusion 

Perfusion of blood through the capillary beds is an incoherent biophysical process that 

closely resembles the Brownian diffusion of water in tissue. Intravoxel incoherent motion 

(IVIM) is another diffusion model that attempts to capture this perfusion along with the 

apparent diffusion coefficient. The simple monoexponential model in Equation 2.9 is 

extended to a biexponential fit to sum up the diffusion and perfusion components:  

 𝑆(𝑏) = 𝑆3Y𝑓Á��;	e^�(§∗`§K�JJÇ) + Y1 − 𝑓Á��;Z𝑒^�∗§THHZ [2.11] 

where 𝑓Á��; is the fraction of blood that is flowing, 𝐷∗ is the pseudodiffusion coefficient 

that describes the random blood flow across the capillary bed, 𝐷�jÈÈÉ describes the 

diffusion of water molecules in blood, and 𝐷WÁÁ is the diffusion coefficient within the 

tissue, like 𝐴𝐷𝐶 (73). Note that the perfusion effects are prominent at low b-values and 

are observed to be negligible at higher b-values, as shown in Figure 2.12. Thus, a 

simplified way to fit Equation 2.11 is to separately fit two ranges of b-values, where both 

diffusion and perfusion effects are considered in the low range and only diffusion is 
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considered for higher b-values (i.e. Equation 2.9). In this way, diffusion and perfusion 

effects can be separated using fewer b-values. 

 

 

In its early stages, IVIM was investigated as a way to assess brain perfusion, 

which is related to brain function. However, the technical challenges of IVIM were 

limiting and the blood oxygen level dependent (BOLD) imaging became the leading 

method being that it was more reliable and sensitive (74). Currently, IVIM is used 

primarily in oncology to measure angiogenesis and heterogeneity of the 

microvasculature. IVIM is used throughout the literature for clinical applications 

including brain tumors and prostate, liver, and breast cancers.  

 In 2011, Sigmund et al. reported significant differences in IVIM parameters 

between normal fibroglandular tissue and malignant lesions. They also showed that the 

perfusion fraction may play a role in differentiating lesions subtypes. Since then, several 

groups have investigated the use of IVIM in breast cancer for diagnosis, treatment 

monitoring, predicting pCR, and prediction of prognostic factors (67).  

2.5 DWI in Breast Cancer  

Although it is widely accepted that CE-MRI is extremely sensitive to breast cancer, the 

specificity of CE-MRI is debated, which plays a role in the controversial use of MRI for 

breast cancer screening and staging as discussed above. Moreover, the safety of 

Figure 2.12 – IVIM Model

The biexponential model accounts for perfusion (blue) and diffusion (green) 
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gadolinium-based agents is not fully understood. Thus, it is desirable to establish an MRI 

method to use in place of or adjunct to CE-MRI. DWI has been widely suggested in 

research to fill this roll and increasingly used clinically. Low ADC values reflect high 

cell density and are associated with malignancies (75). Normal tissue is reported to have 

ADC values of 1.6–2.0 × 10-3 mm2/s, while the mean ADC of malignant tumors has been 

measured between 0.87–1.36 × 10-3 mm2/s and the optimal threshold for differentiation 

has been reported between 0.9 and 1.76 × 10-3 mm2/s (68,76). Accordingly, when 

combined with CE-MRI, DWI may be a powerful tool for more informed decision-

making prior to and during breast cancer treatment. Moreover, DWI has potential 

application in breast cancer screening as it may improve the speed, cost-effectiveness, 

and accuracy of the MRI exams (77).  

2.5.1 DWI applications in breast imaging  

Typically, a simple diffusion model is used for DWI in breast cancer to measure 

ADC maps. Many clinical studies have been performed to assess the usefulness of ADC 

in breast cancer applications from screening to monitoring treatment response. Though 

less common, more complex DWI measures have also been increasingly investigated, 

including synthetic ADC, DTI, DKI, IVIM, and others. Some studies also combined DWI 

with other radiomic features. Here, I’ll present a brief overview of the literature and 

supporting evidence for DWI in breast cancer. See recent publications by Iima et al. (67) 

and Partridge et al. (78) for more detailed reviews.  

Detection and characterization 

The most widely used application of DWI in breast cancer is the use of ADC values to 

determine the malignancy of a lesion, which can help reduce false positives and thereby 

reduce unnecessary biopsies. In a meta-analysis of 13 studies by Chen et al., ADC was 

shown to have 84% sensitivity and 79% specificity distinguishing malignant and benign 

lesions (76). Another meta-analysis by Zhang et al. further showed that DWI can improve 

accuracy of MRI diagnosis when used in conjunction with CE-MRI (79). This increased 

accuracy can have important effects on negative biopsy rates; in a 2019 multicenter study 
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by Rahbar et al. ADC was found to reduce the biopsy rate by 20.9% without losing 

sensitivity (80). 

Based on these results many groups have begun investigating the use of DWI for 

abbreviated and/or non-contrast screening protocols to greatly reduce the scan time and 

cost and potentially circumvent the risk of Gadolinium injection altogether. One major 

limitation of DWI is its low resolution, which greatly limits the sensitivity to small 

lesions in the screening setting. More research is also needed to understand the role of 

diffusion for non-mass-like lesions. most studies to date have been performed in mass-

like lesions and others have found that ADC has limited accuracy in non-mass enhancing 

lesions (81).  

Prognosis 

As medicine becomes more personalized, it is important to determine characteristics that 

can guide the choice of treatments. Some literature suggests that ADC values may be able 

to determine tumor subtype. For example, many studies have shown that ADC is 

negatively correlated with higher proliferation (82–85). Others have found that DWI can 

help identify pre-invasive ductal carcinoma in situ (DCIS) (82,86), suggesting that DWI 

could have major clinical implications in the reduction of overtreatment of non-invasive 

cancers (78). Throughout the literature, associations have also been seen between ADC 

and expression of estrogen receptor (ER), progesterone receptor (PgR), and human 

epidermal growth factor receptor 2 (HER2) (67). However, the current results and 

attempts to correlate diffusion characteristics with histological phenotype are conflicting 

throughout the field. ADC values and other DWI metrics may serve as useful biomarkers, 

but significant research is still required before they are clinically relevant.  

 Another important prognostic factor for breast cancer patients is the status of the 

axillary lymph nodes. Current measures of the lymph nodes by CE-MRI are insufficient 

in distinguishing malignant from benign nodes. Thus, surgical staging, which often leads 

to edema and paresthesia, is required for accurate assessment. DWI may provide a non-

invasive method to stage the nodes. A meta-analysis by Xing showed that lower ADC 

values were measured on metastatic nodes compared with high sensitivity (83%) and 
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specificity (82%) (87). Once again, other studies found conflicting conclusions, 

suggesting the need for further investigation.  

Treatment response  

Choosing the right systemic treatment for a breast cancer patient is critical, and it has 

been shown that patients who achieve pCR prior to surgery from systemic therapies have 

improved survival rates (88). Many recent studies have established DWI as a noninvasive 

and quantitative way to both predict response to treatment, as measured by pCR, and to 

monitor the post-treatment response. However, some studies have shown that these 

results are dependent on the tumor subtype and still others find contradictory results, 

causing lack of consensus at the current time (67).  

2.5.2 Challenges of DWI in breast imaging  

Despite significant advancement in DWI methods, especially in brain, and much 

academic evidence of the value of breast DWI, it is still rarely used clinically. For 

example, at the University of Minnesota, DWI is acquired for patients enrolled in I-SPY 

2 according to the ACRIN 6698 protocol. However, even though the images are readily 

available to the breast radiologists, they are rarely read in the clinical setting. 

Anecdotally, one University of Minnesota radiologist said that DWI and ADC maps are 

not typically used in practice because they are so “crappy”. More rigorously, there are 

two important challenges that must be addressed prior to the adoption of DWI for clinical 

use: standardization and image quality.  

 In order for ADC to be useful as a quantitative measure it must be reproducible 

across scanners, sites, time, users, and patients. However, even as the name suggests, the 

apparent diffusion coefficient is strongly dependent upon the acquisition parameters 

used. Recall that sampling different b-values probes different types of diffusion, as 

explained in Section 2.4. Additionally, the b-value is defined based on the diffusion time 

and strength of the diffusion gradient. However, the same b-value can measure different 

scales of diffusion by changing the time. Another consideration is that the prescribed b-

value can be different than the achieved weighting based on gradient and timing errors or 

diffusion weighting that is caused from other parts of the sequence. Gradient nonlinearity 
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also causes ADC bias, especially far from iso-center, that is spatially varying, system-

specific. One group measured as much as ~25% bias in an ice water phantom around 15 

cm from isocenter in the superior/inferior direction (89). Thus, is it important to use 

quality control across vendors, scanners, sites, etc.  

On the processing side, ADC maps can be calculated with a wide range of fitting 

algorithms and denoising thresholding. These maps are often treated quite differently 

depending on the reader; some prefer to measure the ADC in the lowest region of the 

tumor, while others measure the whole tumor, while still others normalize the ADC 

compared to that of normal fibroglandular tissue. With such large variation, it is difficult 

to define a threshold that distinguishes malignant from benign tissue that is reliable 

across a large range of patients.  

 Fortunately, there is a strong effort in the research community to achieve 

standardization in quantitative imaging by bringing experts in the field together to form a 

consensus on optimal methods and guidelines. Some initiatives include the Radiological 

Society of North America’s (RSNA) Quantitative Imaging Biomarkers Alliance (QIBA), 

the National Cancer Institute’s (NCI) Quantitative Imaging Network (QIN), and the 

European Society of Breast Radiology (EUSOBI). For example, EUSOBI recently 

published breast recommendations in [Ref (90)], covering acquisition parameters (b-

value specifications, fat saturation methods, resolution, TR, TE), ROI placement, and 

quality assurance. Other groups are developing methods for measuring ADC bias and 

robust quality assurance, like using a temperature-controlled ice water phantom (91). 

Another major challenge of clinical breast DWI is the poor image quality of 

current methods. DWI is typically acquired using a standard SE-EPI sequence. While this 

standard approach performs sufficiently in brain imaging, bilateral breast DWI with full 

coverage can be much more challenging. Good B0 shimming is especially difficult 

outside of isocenter and respiratory motion throughout the scan causes a dynamic change 

in the B0 field. The large FOV requires a high sampling frequency in the PE direction 

(usually Left/Right in axial images), which causes geometric distortion and blurring in 

PE. Low inherent SNR, T2
* decay, and long scan times limit the resolution achievable. 

Breast anatomy is very heterogeneous and often contains a large adipose signal, 
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demanding for robust fat suppression and causing a large chemical shift artifact. Finally, 

poor Nyquist ghost correction leaves residual ghosting artifacts that disrupt image 

interpretation and can bias ADC measurements.  

The ACRIN 6698 protocol reasonably represents high-quality, clinically available 

breast DWI. Acquired in 4-6 minutes, the study requires resolution of 1.7-2.8 mm x 1.7-

2.8 mm x 4-5 mm, which is further blurred in the PE direction from dephasing. Compare 

to a typical CE-MRI acquisition, the key sequence of breast imaging, that is acquired at 

≤1.4 mm x ≤1.4 mm x ≤ 2.5 mm (0.6 mm x 0.6 mm x 1.3 mm at our site). Of course, on 

this low-resolution DWI some small lesions will be undetectable, partial volume effects 

will add bias to ADC measurements, and other useful clues (e.g. spiculated borders) will 

be indiscernible.  

One example of this DWI is shown in Figure 2.4, which highlights large 

geometric distortion, chemical shift artifact, residual Nyquist ghosts, and low resolution. 

While this case is admittedly cherry-picked for demonstration purposes, each of these 

artifacts are commonly observed in typical breast DWI. Technical improvements of 

breast DWI are very important for successful clinical integration. Two of these, Nyquist 

ghost correction and spatial resolution, will be addressed in the chapters to come. 
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Chapter 3: Understanding the Nyquist Ghost 

Nyquist ghosts are a phenomenon of EPI imaging that arise in the image due to the back 

and forth nature of the readout train. Eddy currents, timing errors, and imperfect gradients 

can cause inconsistencies between the forward and reverse RO lines (RO+ and RO-). 

This manifests in the image as a replica of the object that falls at ½ of the FOV. Here, I 

will assume a simple linear model of a Nyquist ghost and derive the representation of the 

artifact in image space. Note that this derivation is meant to provide intuition to 

understand the connection between the Nyquist ghost in image space and k-space. For 

simplicity, the 𝑅𝐸𝐶𝑇( ) finite sampling window of k-space will be ignored, and the 

continuous and discrete Fourier transforms will be used jointly.  

3.1 The Ghost Model 

3.1.1 The linear ghost 

The first assumption of Nyquist ghost is that the error affects every other line equally and 

oppositely. Thus, we will start with the signal equation and a comb operator (ΙΙI) to 

separate out the RO+ and RO- lines from k-space: 

𝑚(𝑥, 𝑦) = 𝐹𝑇^E ÍΙΙΙ,∆OQY𝑘)Z𝑀Y𝑘5 , 𝑘)ZÎ
+ 𝐹𝑇^E ÍΙΙΙ,∆OQY𝑘) − ∆𝑘)Z𝑀Y𝑘5 , 𝑘)ZÎ [3.1] 

where 𝑚(𝑥, 𝑦) is the signal in the image domain, 𝐹𝑇^E represents the inverse Fourier 

transform, and 𝑀Y𝑘5 , 𝑘)Z represents the signal in k-space that is sampled at ∆𝑘5 = E¤7¥U 
and ∆𝑘) = E¤7¥Q to satisfy the Nyquist sampling criteria. The comb operator has a period 

of 2∆𝑘) and can be written as: ΙΙΙ,∆OQY𝑘)Z = E,∆OQ ΙΙI Ï ÐÑ,∆OQÒ. Thus, 

𝑚(𝑥, 𝑦) = 𝐹𝑇^E Ó 12∆𝑘) ΙΙΙ Ô 𝑘)2∆𝑘)Õ𝑀Y𝑘5 , 𝑘)ZÖ
+ 𝐹𝑇^E Ó 12∆𝑘) ΙΙΙ Ô𝑘) − ∆𝑘)2∆𝑘) Õ𝑀Y𝑘5 , 𝑘)ZÖ 

[3.2] 
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A typical Nyquist ghost can be modeled as a first-order phase offset between RO+ 

and RO- lines of k-space, which are acquired with positive and negative gradients in x, 

respectively, as shown in Figure 3.1. Assume that the odd lines of k-space are perturbed 

by a phase offset (−𝜙) and shifted in 𝑘5 by (−𝜅); oppositely the even lines are modified 

by +𝜙 and +𝜅. The signal equation can then be written as: 

𝑚¸(𝑥, 𝑦) = 𝐹𝑇^E Ó 12∆𝑘) ΙΙΙ Ô 𝑘)2∆𝑘)Õ𝑀Y𝑘5 − 𝜅, 𝑘)Z𝑒`_×Ö
+ 𝐹𝑇^E Ó 12∆𝑘) ΙΙΙ Ô𝑘) − ∆𝑘)2∆𝑘) Õ𝑀Y𝑘5 + 𝜅, 𝑘)Z𝑒^_×Ö 

[3.3] 

For simplicity, consider the equation in two parts, evens and odds. First, consider 

the even RO lines:  

𝐹𝑇^E Ó 12∆𝑘) ΙΙΙ Ô 𝑘)2∆𝑘)Õ𝑀Y𝑘5 − 𝜅, 𝑘)Z𝑒`_×Ö
= 𝐹𝑇^E Ó 12∆𝑘) ΙΙΙ Ô 𝑘)2∆𝑘)ÕÖ ∗ 𝐹𝑇^EØ𝑀Y𝑘5 − 𝜅, 𝑘)Z𝑒`_×Ù 

[3.4] 

where the Fourier transform of the comb function with period T is defined as 

𝐹𝑇^E{IIIÜ(𝑘)} = EÞ IIIßà(y) such that 𝐹𝑇^E â E,∆OQ ΙΙΙ Ï OQ,∆OQÒã = III Ô )ßä∆åQÕ and 
E∆OQ = 𝐹𝑂𝑉).  

Thus, the righthand side becomes 

= 𝑒`_×𝑒,-_æ5𝑚(𝑥, 𝑦) ∗ III Ô 𝑦
çèéQä

Õ
= 𝑒_(,-æ5`×)£𝑚(𝑥, 𝑦 − 𝜏) � 𝛿 ©𝜏 − ¤7¥Q, 𝑛¬ 𝑑𝜏ë

 s^ë
= � 𝑚©𝑥, 𝑦 − ¤7¥Q, 𝑛¬ 𝑒_(,-æ5`×)ë

 s^ë
 

[3.5] 
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Now consider the odd RO lines:  

𝐹𝑇^E Ó 12∆𝑘) ΙΙΙ Ô𝑘) − ∆𝑘)2∆𝑘) Õ𝑀Y𝑘5 + 𝜅, 𝑘)Z𝑒^_×Ö
= 𝐹𝑇^EØ𝑀Y𝑘5 + 𝜅, 𝑘)Z𝑒^_×Ù ∗ 𝐹𝑇^E Ó 12∆𝑘) ΙΙΙ Ô𝑘) − ∆𝑘)2∆𝑘) ÕÖ
= 𝐹𝑇^EØ𝑀Y𝑘5 + 𝜅, 𝑘)Z𝑒^_×Ù ∗ 𝐹𝑇^E Ó 12∆𝑘) ΙΙΙ Ô 𝑘)2∆𝑘)ÕÖ 𝑒,-_∆OQ)
= 𝑒^_(,-æ5`×)𝑚(𝑥, 𝑦) ∗ � 𝛿 ©𝑦 − ¤7¥Q, 𝑛¬ 𝑒,-_∆OQ)ë

 s^ë
= 𝑒^_(,-æ5`×)£ 𝑚(𝑥, 𝑦 − 𝜏) � 𝛿 ©𝜏 − ¤7¥Q, 𝑛¬ 𝑒,-_∆OQìë

 s^ë
ë
^ë 𝑑𝜏

= 𝑒^_(,-æ5`×) � 𝑚©𝑥, 𝑦 − ¤7¥Q, 𝑛¬ 𝑒,-_∆OQçèéQä  ë
 s^ë

= 𝑒^_(,-æ5`×) � 𝑚©𝑥, 𝑦 − ¤7¥Q, 𝑛¬ë
 s^ë

𝑒_- 

= � 𝑚©𝑥, 𝑦 − ¤7¥Q, 𝑛¬ë
 s^ë

𝑒_(^,-æ5^×`- ) 

[3.6] 

Now add the even and odd lines back together:  

𝑚¸(𝑥, 𝑦) = � 𝑚©𝑥, 𝑦 − ¤7¥Q, 𝑛¬ 𝑒_(,-æ5`×)ë
 s^ë
+ � 𝑚©𝑥, 𝑦 − ¤7¥Q, 𝑛¬ë

 s^ë
𝑒_(- ^,-æ5^×)

= � 𝑚©𝑥, 𝑦 − ¤7¥Q, 𝑛¬ë
 s^ë

Y𝑒_(,-æ5`×) +	𝑒_(- ^,-æ5^×)Z
= � 𝑚©𝑥, 𝑦 − ¤7¥Q, 𝑛¬ë

 s^ë
(cos(2𝜋𝜅𝑥 + 𝜙)

+ 𝑖 sin(2𝜋𝜅𝑥 + 𝜙)+	cos(𝜋𝑛 − 2𝜋𝜅𝑥 − 𝜙)
+ 𝑖 sin(𝜋𝑛 − 2𝜋𝜅𝑥 − 𝜙)) 

[3.7] 
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Now consider the sum 𝑛 for −∞ to ∞. When 𝑛 is even, cos(𝜋𝑛 − 2𝜋𝜅𝑥 − 𝜙) =
cos(2𝜋𝜅𝑥 + 𝜙) and 𝑖 sin(𝜋𝑛 − 2𝜋𝜅𝑥 − 𝜙) = −𝑖 sin(2𝜋𝜅𝑥 + 𝜙). When 𝑛 is odd, 

cos(𝜋𝑛 − 2𝜋𝜅𝑥 − 𝜙) = −cos(−2𝜋𝜅𝑥 + 𝜙) and 𝑖 sin(𝜋𝑛 − 2𝜋𝜅𝑥 − 𝜙) =
𝑖 sin(−2𝜋𝜅𝑥 − 𝜙). Thus, 

𝑚¸(𝑥, 𝑦) = � 𝑚©𝑥, 𝑦 − ¤7¥Q, 𝑛¬
 	�ô� 

(cos(2𝜋𝜅𝑥 + 𝜙)
+ 𝑖 sin(2𝜋𝜅𝑥 + 𝜙)+cos(2𝜋𝜅𝑥 + 𝜙) − 𝑖 sin(2𝜋𝜅𝑥 − 𝜙))
+ � 𝑚©𝑥, 𝑦 − ¤7¥Q, 𝑛¬

 	ÈÉÉ
(cos(2𝜋𝜅𝑥 + 𝜙)

+ 𝑖 sin(2𝜋𝜅𝑥 + 𝜙)−cos(2𝜋𝜅𝑥 + 𝜙) + 𝑖 sin(2𝜋𝜅𝑥 − 𝜙))
= � 𝑚©𝑥, 𝑦 − ¤7¥Q, 𝑛¬ 2

 	�ô� 
cos(2𝜋𝜅𝑥 + 𝜙)

+ � 𝑚©𝑥, 𝑦 − ¤7¥Q, 𝑛¬
 	ÈÉÉ

2𝑖 sin(2𝜋𝜅𝑥 + 𝜙) 

[3.8] 

and due to the cyclic nature of the FOV and ignoring the scaling factor due to the lack of 

windowing, we can simplify this as: 

 𝑚¸(𝑥, 𝑦) = 𝑚(𝑥, 𝑦) cos(2𝜋𝜅𝑥 + 𝜙) + 𝑚©𝑥, 𝑦 ± ¤7¥Q, ¬ 𝑖 sin(2𝜋𝜅𝑥 + 𝜙) [3.9] 

Equation 3.9 shows that there will be an object in its correct position but it will have a 

signal modulation dependent on cos(2𝜋𝜅𝑥 + 𝜙) and that there will be an imaginary 

ghost that falls at 
çèéQä  and is modulated by sin(2𝜋𝜅𝑥 + 𝜙). Notice that the ghost-free 

image corresponds to when 𝜅 = 𝜙 = 0; as expected, Equation 3.9 becomes 

 𝑚¸(𝑥, 𝑦) = 𝑚(𝑥, 𝑦) cos(0) + 𝑚 ©𝑥, 𝑦 ± ¤7¥Q, ¬ 𝑖 sin(0) = 	𝑚(𝑥, 𝑦) [3.10] 

The derivation of Equation 3.9 assumes that k-space is fully sampled. In the case of 

accelerated acquisitions with undersampling factor 𝑅, Equation 3.9 becomes less 

straightforward; the unaliased and reconstructed image will contain multiple replicas 

(𝑚�pÈk2) of the object (𝑚È�e��2) at locations given by 

 𝑚�pÈk2(𝑥, 𝑦) = �𝑚È�e��2 Ô𝑥, 𝑦 ± (2𝑗 + 1)𝐹𝑂𝑉)2𝑅 Õ6^E
es3

 [3.11] 
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These ghosts will have an additional spatially dependent signal modulation that depends 

on the sensitivity profiles. For example, for an acquisition with 𝑅 = 3 undersampling, the 

ghost will appear shifted by 
EÂ𝐹𝑂𝑉), 

«Â𝐹𝑂𝑉), and 
öÂ𝐹𝑂𝑉) relative to the object. 

 

 

3.1.2 The 2-dimensional ghost  

While a 1-dimensional linear ghost is caused by shift in the RO lines of k-space in 𝑘5, 

there can also be slight differences in 𝑘), which causes a 2D ghost, or sometimes called 

an oblique ghost. We can describe this as a shift in 𝑘) that we will call 𝜆. Similarly, the 

ghosted image can be described as:  

 

𝑚¸(𝑥, 𝑦) = 𝐹𝑇^E Ó2∆𝑘)ΙΙΙ Ô 𝑘)2∆𝑘)Õ𝑀Y𝑘5 − 𝜅, 𝑘) − 𝜆Z𝑒^_×Ö
+ 𝐹𝑇^E Ó2∆𝑘)ΙΙΙ Ô𝑘) − ∆𝑘)2∆𝑘) Õ𝑀Y𝑘5 + 𝜅, 𝑘) + 𝜆Z𝑒`_×Ö 

[3.12] 
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Figure 3.1 – First order Nyquist ghost

Nyquist ghosts can be modeled as a shift in kRO (!) and a phase offset (") between 

RO+ and RO- lines. A Nyquist ghost is simulated with κ = 1 and " = 0. The signal 

intensity of the ghost is modulated in x by sin(2$!%), which causes a signal null at x = 

0. The object is modulated by cos(2$!%); see Equation 3.3.
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Following the same derivation given above, the 2D ghost can be described in image 

space as:  

 

𝑚¸(𝑥, 𝑦) = 𝑚(𝑥, 𝑦) cos(2𝜋𝜅𝑥 + 2𝜋𝜆𝑦 + 𝜙)
+𝑚 ©𝑥, 𝑦 ± ¤7¥Q, ¬ 𝑖 sin ©2𝜋𝜅𝑥 + 2𝜋𝜆𝑦 + 𝜙 − 𝜆¤7¥Q, ¬ 

[3.13] 

Figure 3.2 demonstrates a shift in 𝑘), simulating the effect in image space as this 

equation predicts. Notice that in the case where 𝜆 = 0, Equation 3.13 simplifies to 

Equation 3.9 describing a linear ghost. 

 

 

3.2 Ghost Correction Methods throughout Literature 

3.2.1 The three-line navigator 

a)

b)

Signal null 
according to 

sin(2!"#) 

"

Figure 3.2 – The oblique ghost

An oblique, or 2D, ghost can be caused by a shift in ky between the RO+ and RO-

lines, as shown exaggerated in (a). Shifts in kx and ky can occur simultaneously (b). 

The Shepp-Logan was simulated with the following parameters: a)  ! = 0, % = 0, & =

0.3 and b) ! = 0, % = 0.6, & = 0.3, where ! is a 0th order phase offset [radians], % is a 

1st order shift in kx [units Δ+,], and & is a 1st order shift in ky [units Δ+-]. The ghost 

always falls at FOV/2 in the PE direction. In an oblique ghost there is an additional 

signal modulation in y of sin(2.&/) in the ghost and (2.&/) in the object. See Equation 

3.7. 
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Based on the linear model of Nyquist ghosts, the most common correction of ghosts uses 

a three-line navigator. As the name suggests, the three-line navigator samples three RO 

lines in the center of 𝑘) before every acquisition. The first and third lines (RO+) are 

averaged together to reduce the effect from B0 inhomogeneity. The RO- and averaged 

RO+ lines are Fourier Transformed in the RO direction and the phase is compared 

between the two in hybrid 𝑘)-𝑥 space. The phase difference is fit to a line, where the 

slope is 𝜅 and the intercept is 𝜙, as shown in Figure 3.3. 

 

 While this navigator approach performs well in brain imaging, it often fails in 

breast DWI because of residual fat signal, respiration, lower SNR for fitting, and bigger 

B0 inhomogeneity. Figure 3.4 shows an example of a mild ghost failure that is typical in 

breast DWI acquired with the ACRIN 6698 protocol and reconstructed online. Notice 

how even a small ghost in the source images can have significant affect in the ADC map, 

which inhibits the interpretation of the ADC map and can bias the ADC values in the 

lesion depending on its location.  

 

Figure 3.3 – The three-line navigator

The phase difference between RO+ and RO- is fit to a line. The 1st order correction is 

applied in ky-x space. 
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3.2.2 The full phase navigator  

The linear 3-line navigator assumes that the Nyquist ghost is caused by a phase difference 

between the positive and negative RO lines that it constant over the whole RO train. 

However, one potential source of Nyquist ghosts is eddy currents, which are time varying 

and may change drastically or even die out completely over the course of the readout. 

Similar to the model used with the three-line navigator described above, the full phase 

navigator is based on the assumption that the phase difference between any two 

subsequent lines of k-space can be described as a shift in kx (𝜅) and a phase offset (𝜙). 

However, the model is relaxed to account for a time-varying component of this linear 

ghost caused by time-dependent eddy currents.  

The full phase navigator is measured as a separate acquisition that is a replica of 

the typical pulse sequence modified to disable the phase encoding blips, thus repeating 

the navigator throughout the whole RO train. Then every RO+ line is compared to the 

average of the two RO- lines on either side of it. This phase difference is fit to a linear 

model, as described above, and corrected in the subsequent acquisitions, assuming that 

the eddy currents caused by the pulse sequence are reproducible.  

While the full phase navigator can more accurately correct for time varying 

ghosts, it is associated with some disadvantages. First, T2
* decay causes signal loss 

throughout the readout train, which may lead to insufficient SNR to measure the phase 

offset later in the readout. Second, acquiring a full navigator is time consuming, which 

can cause a large increase in scan time. One may choose to acquire just a single navigator 

to avoid lengthening the scan time too much, but this additionally assumes that the phase 

error is not dependent on diffusion gradients and does not vary over the course of the 

scan from respiration or scanner drift.  

3.2.3 Phase mapping approaches 

Figure 3.4 – Nyquist ghost in breast DWI

An example of a small residual ghost, typical in breast DWI (ACRIN 6698) after 3-line 

navigator correction. Small ghosts in source images (left) can greatly affect the ADC 

map.
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Based on the Fourier relationship between k-space and image space, the inconsistencies 

between the even and odd lines of k-space correspond to phase differences between an 

image based on the even echoes compared to an image based on the odd echoes. In fact, 

the navigator approach measures the phase difference in the 1D image space, assuming it 

is constant through ky. If the ghost is caused by inconsistencies in kx and ky, this phase 

difference can be described by a 2D surface, rather than a line. Thus, many ghost 

correction methods measure this phase difference in x-y image space, which requires 

fully sampled k-space with RO+ and fully sampled k-space with RO-, or other tricks to 

circumvent aliasing. Several strategies to acquire this reference data have been proposed 

throughout literature.  

 In one method by Chen and Wyrwicz (92), two reference scans are acquired 

without diffusion weighting: one is a typical fully sampled acquisition, the other contains 

one additional PE blip that effectively reverses the RO polarity of each line. These two 

reference sets are stitched together in a way to create RO+ and RO- only images, whose 

phase is compared to create a 2D phase map in image space that represents the difference 

in phase between RO+ and RO-. The inverse of this phase map can be directly applied to 

the RO+ lines in subsequent acquisitions or first fit to a model, like Equation 3.13 or even 

higher order if needed.  

Another way to obtain a 2D phase map is to fully sample k-space with double 

FOV, proposed by Zur and extended by Xu et al. In this case, the RO+ and RO- echoes 

can be separated to provide RO+ and RO- images without aliasing (Figure 3.5). Again, 

their phases are compared as described above (93,94). One disadvantage with this 

approach is that the echo spacing is doubled in the reference acquisition, thus the 

geometric distortion will be unmatched in the phase map compared to the data itself.    
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3.2.4 Phase cancellation  

Phase labeling for additional coordinate encoding (PLACE) can be used for both 

geometric distortion and/or Nyquist ghost correction (95). In PLACE, data is acquired 

two or three times: the first image (𝐼3) adheres to the normal encoding strategy, while the 

additional images (𝐼 É and 𝐼 É) are modified by an additional PE blip of area ±𝑑, where 

𝑑 corresponds to one step in kPE. One of the additional images is used for Nyquist ghost 

correction; the ghost in 𝐼3 will have opposite phase compared with that of 𝐼 É, so that 

complex additions will cause cancellation of ghosts and yield ghost-free images. The 

third acquisition 𝐼 É, can be used for distortion correction. Based on the Fourier shift 

theorem, in image space, the phases of 𝐼3 and 𝐼 É differ by a phase ramp that is exactly 

linear in the PE direction in an ideal B0. However, in the presence of inhomogeneity, the 

nonlinearity of the phase difference corresponds directly to the distortion experienced by 

a given pixel.  

 An easy alternative to PLACE that is based on the same concept is RO-reversal. 

In this case the full acquisition is simply repeated with reversed RO polarities. Complex 

addition of these two data sets will cancel out static ghosts (Figure 3.6). Either PLACE or 

RO-reversal requires a large increase in scan time, as a second acquisition of the full data 

is required.  

Figure 3.5 – Nyquist ghost correction by 2D phase mapping

Double FOV is used to obtain one RO+ and one RO- image without aliasing. In this 

case, the phase map can be well-described by a linear phase in x, which corresponds 

to κ and ϕ.
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3.2.5 Parallel imaging-based methods 

As coil sensitivity profiles can be used to infer imaging data, they can also be used to 

measure spatially varying phase differences between the positive and negative RO lines 

in a variety of ways. The major PI-based methods are PAGE, EPI-GESTE, and DPG, 

described below.  

Phased array ghost estimation (PAGE) 

Phased array ghost estimation (PAGE), proposed in 2006 by Kellman and McVeigh, 

separates the even and odd echoes to obtain two sets of data with R = 2 undersampling 

(96). Then, SENSE is employed to reconstruct each set, forming two ghost-free images 

These two images can simply be incoherently added using a sum of squares, but this 

causes a reduction in SNR due to additive noise. Instead, the individual images are 

weighted by their point spread function and coherently combined using a complex 

weighted sum.  

 PAGE was extended to real-time PAGE by Kim et al., in which the reference data 

is no longer acquired. Instead, the RO polarity is reversed for every other timepoint (97). 

Interleaving two consecutive sets provides a fully sampled k-space that can be used for PI 

calibration.  

EPI Nyquist ghost elimination via spatial and temporal encoding (GESTE) 

Phase

+

=

Original

Acquisition

Figure 3.6 – Nyquist ghost phase cancellation

Assuming the phase difference between RO+ and RO- is reproducible across scans, 

the phase is equal and opposite when the RO direction is reversed. 
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Real-time PAGE was further extended by Hoge et al. to form EPI Nyquist ghost 

elimination via spatial and temporal encoding (GESTE), which follows the PAGE 

procedure but also includes an aspect of the PLACE method (98). A single acquisition is 

deinterleaved to produce RO+ and RO- data with R = 2 undersampling. Again, PI is used 

to fill in the unacquired lines in each set. However, in this case the PI is calibrated on a 

PLACE recon from two consecutive scans with opposite RO polarity. The two 

reconstructed sets are then combined coherently to cancel out residual ghosts.  

Both GESTE and real-time PAGE maintain the temporal footprint of the acquired 

data, compared to PLACE and PAGE that combine contrasts acquired from two separate 

timepoints in the final acquisition. One major disadvantage of these methods is their 

incompatibility with typical PI for acceleration. In both PAGE and GESTE, deinterleaved 

images require R = 2 undersampling to reconstruct fully sampled RO+ and RO- 

acquisitions, which limits the amount of undersampling that can be used in the 

acquisition.  

Dual-polarity GRAPPA (DPG) 

Dual-polarity GRAPPA (DGP), proposed by Hoge and Polimeni, combines EPI ghost 

correction with GRAPPA unaliasing and uses the GRAPPA reconstruction to correct 

non-linear ghosts (99). In standard GRAPPA, the kernel is considered shift-invariant, 

meaning that a single kernel can be used for the entirety of k-space. Thus, GRAPPA is 

described as: 𝑘÷ = 𝑤𝑘, where 𝑘÷ is the reconstructed full k-space, 𝑘 represents measured 

data, and 𝑤 contains the weights that map the acquired data to the undersampled lines.  

In DPG, the conventional GRAPPA reconstruction is slightly modified to 

estimate two separate kernels that are unique to the polarity of the RO lines involved. In 

other words, one set of weights, 𝑤, is applied to RO+ lines, and another, 𝑣, is applied to 

RO- lines: 𝑘÷ = 𝑤𝑘^ + 𝑣𝑘`. In this case 𝑘÷ is the estimated ghost-free data that is 

synthesized despite having been acquired. The weights 𝑤 and 𝑣 are estimated based on 

two sets of reference data; one, a full ghost-free acquisition and the other is a typical 

ghosted EPI acquisition. This reference data is one disadvantage of DPG; for robust ghost 

correction a clean reference set is required. Moreover, the ghosting artifact must be 
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consistent between the reference data and the subsequent acquisition. One advantage of 

DPG is that it can readily be extended to accelerated data, although it does require a 

larger number of weight sets that are consistent with the RO polarities.  

3.2.6 Referenceless methods  

Another class of methods, referenceless methods, uses some defined metric to quantify 

the level of ghost to solve an optimization over the 0th (𝜙) and 1st (𝜅) order ghost 

parameters to minimize the ghost intensity. Several measures have been defined 

throughout the literature that serve as cost functions (𝑓�Èk2(𝜙, 𝜅)) in the minimization. 

Clare proposed a heuristic cost function as the image entropy in the spatial domain 

(100,101). Another, proposed by Peterson et al., is based on a singular value 

decomposition (SVD) of k-space after rearranging into GRAPPA-like kernels (102). 

Others use summation over the image space of manually drawn ROIs or certain regions 

of the image defined by the FOV (103).  

Referenceless methods may be advantageous because they are based on the 

imaging data itself and do not require any additional navigator or reference data, which 

could allow for decreased acquisition time and/or shortened TE. Furthermore, they are 

easily integrated into any acquisition strategy and can be applied to retrospective data. 

They are not strictly limited by in-plane acceleration and SMS because they do not rely 

on any coil sensitivity data (33,36,104,105); however, previous reports have suggested 

that the image-space-based referenceless methods may be limited by aliasing (100,102). 

As a data-driven correction, referenceless methods may also be limited by signal 

intensity, deteriorating for low SNR acquisitions like high b-value or high-resolution 

scans.  

3.3 Characterization of the Nyquist ghost in breast DWI: 

Preliminary Studies 

Many advanced ghost correction methods proposed throughout the literature are based on 

the assumptions that a linear, time-invariant model is insufficient for describing the phase 

error. For example, phase mapping methods (Section 3.2.3) assume a 2D phase error that 
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varies over x-y space, PI-based methods (Section 3.2.5) circumvent using a model 

altogether and therefore account for nonlinearities, and full phase navigators (Section 

3.2.2) measure a time-varying phase error. Thus, it is important to characterize the 

ghosting artifact in order to reduce the residual ghost. In this work, several phantom and 

in vivo studies were conducted under various conditions to measure and understand the 

Nyquist ghost that arises in breast DWI acquisitions. 

 

 

3.3.1 Performance of three-line and full-phase navigators 

The three-line navigator is typically acquired prior to the acquisition and prior to the 

diffusion weighted gradients, as shown in Figure 3.7. Thus, each acquisition is associated 

with a unique navigator that is acquired a short time before it, including each reference 

scan, slice, b-value, and average. Note, however, that the 3-line navigator does not 

include effects from diffusion weighting gradients. For example, in the ACRIN 6698 

DWI protocol, there are about 60 ms between the navigator and the beginning of the 

echo, or a ~80-90 ms delay until the center of the echo. It is also independent across coils, 

as the ghost parameters may be spatially varying or depend on time delays in the 

hardware. By carefully examining the three-line navigator and comparing it to the full-

RF

Gx

Gy

Gz

ADC
Diffusion gradients

180°180°

90°

Figure 3.7 – DWI pulse sequence example

The three-line navigator (circled in red) is acquired prior to the diffusion gradients 

(bipolar diffusion shown). 
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phase navigator, we will characterize the slice-, coil-, and time dependence of the ghost, 

making the assumption that it can be reasonably described by a linear phase error in kx-y 

space.  

Experiment 1 – Sensitivity to B0 Inhomogeneity  

The purpose of this experiment was to determine how B0 inhomogeneity and off 

resonance affect the 3-line navigator. Several shimming conditions were used to simulate 

B0 inhomogeneity and the resonance frequency was shifted to simulate off resonance.  

Methods: A cylindrical saline phantom was scanned at iso-center with a 2-channel head 

coil for a single slice using standard SE-EPI DWI for a single repetition of b = 0 s/mm2. 

In the control case, interactive, static shimming was used to optimize B0 homogeneity. 

The experiment was repeated with various alterations from the optimized shimming 

solution to simulate poor shimming or a change in the field between shimming and 

scanning. The shimming parameters were changed from the control case as follows: 1) 

modified shim in X of 10 μT/m, 2) modified shim in Y of 10 μT/m, and 3) modified X2Y2 

shim of 189 μT/m2. Finally, the scan was repeated with optimal shimming and a shift in 

the center frequency of +100 Hz to represent a constant off resonance, similar to that of 

adipose signal. A three-line navigator was acquired with each and the phase difference 

was plotted for three different combinations, including the phase between lines 1 and 2, 

lines 3 and 2, and the average of lines 1 and 3 with line 2.  

Results: The effect of poor shimming is evident in the image domain, as shown in 

Figure 3.8. The distortion occurs in the PE direction, as expected, because of the phase 

accrual over the echo train in ky. Notice that the amount of shift in y is dependent on the 

shimming parameter. For example, with inhomogeneity in X, the shift is to the left for x 

> FOV/2 and to the right for x < FOV/2. With Y inhomogeneity, the magnitude of the 

shift in y depends on the y position (i.e. more at the edges of the phantom as they are 

farther from y = FOV/2. In the X2Y2 case, the distortion depends on the position in both x 

and y. 
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The phase differences measured in three different ways are shown in Figure 3.8, 

which shows the effect of poor shimming. When the B0 field is homogeneous, as in the 

control case, the 3-line navigator (averaging the 1st and 3rd lines) is equivalent to the 2-

line navigator (using either line 1 or 3). However, in the case of poor shimming in x, the 

navigator estimated different ghost correction depending on what lines are used, as 

evident in the zoomed part of Figure 3.8 (right). While all three had similar slopes, the 0-

order phase offset (𝜙) shifted as the phase accrued through the echo-train. Averaging 

lines 1 and 3 together gave some average 𝜙 estimate. Poor shimming in the y-direction 

did not affect the navigator because the navigator represents a projection through the y 

Figure 3.8 – Effect of B0 on 3-line navigator

The effect of shimming is shown in the image domain (left) compared to a true circle 

(white line). Distortion occurs in y with magnitude dependent on the direction of B0

shimming. The effect on the navigator phase (center) is zoomed (right) to show that 

averaging the 1st and 3rd lines (red) of the 3-line navigator accounts for inhomogeneity 

in x. 
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direction. This effect was much larger when the off resonance is 100 Hz, as shown in 

Figure 3.9. Furthermore, the 0th order phase offset is much larger than that measured on 

resonance even after accounting for the phase accrual by averaging RO+ navigator lines 1 

and 3.  

 

 

Discussion: In breast DWI, even with the use of high order B0 shimming, geometric 

distortions are often greater than those shown in Figure 3.8, especially around the nipple. 

Thus, Figure 3.8 highlights the importance of the 3-line navigator compared to a 2-line 

navigator. Inhomogeneity in X causes phase to accumulate between the two lines that is 

not caused by the even/odd nature of the echo train but is consistent along the whole 

acquisition. In this case, the averaging over the 1st and 3rd lines canceled out this phase 

accrual, i.e. simulated the measurement of the RO+ line at the same time that line 2 (RO-) 

was measured. However, this assumes that the inhomogeneity is static throughout the 

scan and the navigator, which is not always the case, especially with respiratory motion 

and eddy currents.  

 Considering off-resonance, we chose 100 Hz, which is about 1/4th the frequency 

separation between water and the resonance peaks of adipose signal at 3 T. This 

magnitude of off resonance caused a large shift in 𝜙, likely caused by phase wrap. 

Moreover, in this experiment the off resonance was constant in space; in reality, the fat 

Figure 3.9 – Off resonance effect on 3-line navigator

With 100 Hz off resonance, the navigator experiences a large phase shift despite 

averaging over lines 1 and 3 (red), possibly due to phase wrapping. Compare to 

control in Figure 3.8. 
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signal will occur throughout space in various amounts, which may add discontinuities to 

the phase measurement in the RO direction. Due to the projection nature of the navigator 

in the y direction, the water and fat signal will mix together across the PE direction 

potentially causing nonlinearities dependent on the magnitudes of each signal. This is 

further demonstrated in Experiment 3 below.  

Conclusion: It is important to combine lines 1 and 3 of the three-line navigator in order 

to account for B0 inhomogeneity in x. Inhomogeneity that is not corrected for may cause 

a small shift in 𝜙. A large frequency offset may lead to a large phase shift in the 

navigator estimation.  

Experiment 2 – the effects of slice, coil, and breathing 

The purpose of this experiment was to understand how variable RO+/RO- phase 

differences are across coils, slices, and repetitions with and without simulated breathing. 

A case of navigator failure was closely examined.  

Methods: The CaliberMRI breast phantom (model 131) was scanned axially using a 

standard SE-EPI DWI protocol based on the ACRIN 6698 clinical trial with a 16-channel 

breast coil (Sentinelle). The data were acquired with undersampling of R = 2, but the 

FOV was doubled so that the data could be treated as fully sampled. Because the 3-line 

navigators are not affected by the diffusion weighting, it was set to b = 0 s/mm2 but the 

acquisition was repeated for 10 repetitions under two conditions. For the control, the 

phantom was scanned as usual with interactive static shimming. The experiment was then 

repeated with simulated “breathing” by rolling a saline bottle towards (up to about an ½ 

inch away) and away (up to about 10 inches away) from the phantom at about once per 2 

seconds without touching the phantom. The movement of the water bottle through air will 

change the magnetic susceptibility of the scan area, which will change the B0 shimming. 

This simulates the up and downward motion of the diaphragm that displaces air, which 

affects the B0 field dynamically through time and is not accounted for with standard static 

shimming. 

Offline, the phase difference of the complex raw 3-line navigator data was fit to a 

linear model after some smoothing (Savitzkey-Golay) and weighting by the signal 
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intensity, which provided a 0th (𝜙) and 1st (𝜅) order correction term that is unique for 

every coil, slice, and repetition. To consider the distribution of 𝜙 and 𝜅 in the control 

case, the edge slices with no signal were removed, as the fit is invalid without any signal. 

Assuming outlier estimates were caused by poor navigator fitting, outlier pairs were also 

removed. 𝜙 and 𝜅 were separately considered across the slices with signal, all channels, 

and ten repetitions of control data; pairs were removed if either was an outlier, defined 

based on three median absolute deviations from the median estimation.  

In cases with navigator failures, a referenceless linear ghost correction technique, 

(ghost/object minimization, described in Chapter 4) was applied to consider whether 

other linear corrections could improve performance in individual slices and coils. The 2D 

simplex search was started at 𝜅 = −0.6 and 𝜙 = 0. The resulting parameters were 

plotted with the navigator to compare solutions.  

To consider the effect of simulated breathing, a single channel and slice was 

chosen with sufficient signal. The 10 timepoints represent a range throughout the 

respiratory cycle, where the worst-case scenario would be a navigator separated in time 

from the data by about ½ the respiratory cycle to cause the largest change in B0. For 

demonstration purposes, the 𝜅 and 𝜙 pair from the repetition with the biggest difference 

between “breathing” and control was chosen and used for the following analysis.  

Results: 

Slice and coil dependence 

Navigator estimates for a single repetition of control phantom data are shown in Figure 

3.10a. Six slices were removed due to little or no signal in the slice. Out of 4800 

estimated pairs, 112 𝜅 estimates and 204 𝜙 estimates were considered outliers, combined 

for 246 total pairs removed. The mean values were 𝜅 = −0.643 ± 0.0409 and 𝜙 =
0.085 ± 0.0438, which correspond to a shift in kx of about 0.64 ∗ ∆𝑘5 between RO+ and 

RO- and 0.09 radians phase offset. The ghost correction parameter is mostly stable across 

the whole acquisition (Figure 3.10a); which is also consistent with other in vivo breast 

DWI acquisitions (data not shown) scanned on the same coil and two Siemens 3 T 

Prismafit systems. The parameters tend to vary smoothly over slices but have a clear 
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bimodal distribution across coils as shown in Figure 3.10b, which did not seem to 

correspond to the Left/Right coils or the position within the coil. 

 

 
 

 

Considering the consistency across the acquisition, looking at these outlier data 

points can reveal some insight into where the navigator correction went wrong. From 

Figure 3.10, it is clear that channel 8, slice 25 did not follow smooth variation over the 

slices as expected. Figure 3.10c shows the reconstruction using the estimated ghost 

correction, demonstrating that this inconsistent point led to inferior ghost correction, 

compared to its neighbor whose correction was closer to the mean.  
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Figure 3.10 – Slice and coil distribution of ! and "

The ghost parameters varied smoothly over slice (a) and showed a bimodal 

distribution across coils (b). Corrected images for coil 8, slices 24 and 25 are shown 

(c). The estimate for slice 24 was consistent with the rest of the acquisition, while slice 

25’s correction parameters were not (a, arrow). The outlier correction led to a residual 

ghost (c). 
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Considering this failed ghost correction, an interesting question was whether or 

not any combination of linear parameters would reasonably correct the ghost. If there was 

none, the ghosting artifact itself was likely non-linear. However, if another pair of 𝜙 and 

𝜅 succeeded in correcting the ghost, this suggested that the navigator data was 

insufficient at measuring the linear phase error in this case. The 3-line navigator phase 

(blue line) and linear fit (red line) are shown in Figure 3.11. Although the navigator 

solution reasonably fit the navigator data, there was substantial residual ghosting (red 

arrow). On the other hand, the referenceless estimation (yellow line) reduced the residual 

ghost.  

Breathing effect  

The simulated breathing caused a shift in the image domain through time, as shown in 

Figure 3.12, which compares the control and breathing cases. Looking at a time series 

(data not shown), the phantom appeared to jump around in the PE direction through the 

10 repetitions with simulated breathing and stayed stationary in the control case. To 

demonstrate this effect, a single time point (repetition 9) is shown in Figure 3.12, where a 

there is a small shift between the two images in the PE direction as demonstrated by 

plotting the signal through the PE direction. A constant shift in PE is caused by a shift in 
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Figure 3.11 – Navigator with residual ghost

The navigator correction (red) left a residual ghost (arrow). The referenceless

correction (yellow) did not fit the navigator data well but did reduce the ghost.
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the center resonance frequency, which can be readily estimated based on the magnitude 

and direction of the shift in PE. Notice that, to a lesser extent, the shift between the edges 

varied over the image space, consistent with geometric distortion caused by spatially 

varying change in B0.  

 

 

 Similarly, the navigator phase difference shifted slightly as the B0 field changed, 

as shown in Figure 3.13b, which caused a larger variability in the estimates of 𝜅 (Figure 

3.13c) and 𝜙 (Figure 3.13d). Figure 3.13e shows the effect of breathing on the navigator 

correction. Here, the control data was corrected based on the control navigator or based 

on the ‘breathing’ navigator. The inconsistent data caused a very small residual ghost 

(Figure 3.13e) that was not present in the static case.  
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Figure 3.12 – The effect of “breathing” in the image domain

Breathing was simulated by rolling a water phantom into and out of the scanner. 

Images are pre-ghost corrected and zero-padded for better visualization. There is a 

small apparent shift in the PE direction between the control (a) and simulated 

breathing (b) cases, demonstrated by the grey line. The effect is further demonstrated 

by plotting the signal intensity through the center 
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Discussion: Linear ghost correction parameters are relatively consistent throughout a 

data set where there is sufficient signal, varying smoothly over the slices and varying 

negligibly through repetitions in a phantom case without respiration or movement. There 

is a small bimodal effect across coil in the 16-channel Sentinelle breast coil that may be 

caused by delays in the electronics based on some polarity of the surface coils. These 

consistent corrections are associated with reliable ghost correction. However, in many 

cases the outlier ghost correction parameters correspond to insufficient ghost correction. 

These cases seem to occur for arbitrary combinations of slice, coil, and repetition despite 

being measured in phantom data without the presence of motion. Moreover, the failures 

were not consistent over repetitions (data not shown), highlighting the unreliable nature 

of the 3-line navigator. Importantly, there is in fact a linear correction that outperforms 

the navigator solution, adequately correcting the ghost.  

 When ‘breathing’ is introduced the variability across repetitions increases. 

However, the variability caused by changing B0 inhomogeneity is small compared to the 

arbitrary failures, which suggests that large ghost correction failures observed in in vivo 

data are likely not caused solely by respiratory motion between the navigator and the 
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A small variability is visible in the navigator data when breathing was introduced (b vs a). This 

led an increase in variation of the estimated ghost parameters (c, d), which can lead to a 
residual ghost (e).
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imaging data. However, small residual ghosts may be caused by small field perturbations 

between the time the navigator is measured and when the center of the echo is measured, 

as shown in Figure 3.13e. This effect was shown here for a breathing-like ΔB3, however, 

eddy currents can also cause spatially varying field perturbations. Moreover, these effects 

can vary through the echo, causing a time-varying ghost (see Experiment 4 below).  

Conclusion: The linear ghost parameters varied smoothly over slices and demonstrated 

a bimodal distribution across coils. Simulated breathing caused a small residual ghost but 

did not account for a navigator failure. Instead, outlier parameters caused ghost correction 

failure.  

Experiment 3 – Sensitivity to Fat 

The purpose of this experiment was to understand how large off resonance caused by 

unsuppressed adipose signal affects the linear navigator.  

Methods: A cylindrical phantom containing water in the center surrounded by oil was 

scanned using a 2-channel head coil at isocenter. Low spatial resolution was used to 

achieve high SNR for a single 10 mm slice. The center frequency was purposefully 

shifted by 164 Hz towards the resonance peak of fat (from 12373715 to 123173551 Hz) 

in order to include some fat signal, representing failed fat suppression. 8 repetitions were 

acquired both with and without simulated breathing, as described above.  

In a second experiment, two phantoms were scanned at multiple slices with the 

16-channel breast coil. On one side of the coil, the phantom contained a tube of water 

surrounded by oil. In the other side, a cylindrical saline phantom was used. Thus, through 

the slice direction, some images contained water only, fat only, or both water and fat.  

Results: In the image domain, there was significant signal left in the fat, which was 

shifted significantly from the water in the PE direction based on the echo spacing and the 

frequency difference. In this case, the water also shifted from its center position in PE 

because the frequency of water was also off resonance caused by the shift of the center 

frequency of the receiver, as Figure 3.14 shows. There was also a geometric distortion 

that occurred in both the water and the fat but more prominently in the fat; notice that the 

shape of the center tube of fat is much less round than that of the water signal.  
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 In the control case, the phase difference was quite linear in the region that 

corresponds to the fat, and there was a small non-linearity at the RO position that 

contained both fat and water through the PE projection. When a field perturbation was 

introduced by simulated breathing, this non-linearity became very prominent and varied 

with increasing and decreasing contribution from the water signal through the PE 

projection. Similar to Figure 3.13b, when breathing was introduced, the B0 

inhomogeneity caused phase accrual that increased through the RO train, which 

contributed to inconsistency in the phase difference.  

 These navigator solutions were tested in Figure 3.15. Despite the very linear 

phase in the control case and close fit (red line), the navigator solution was still 

insufficient and left a residual ghost of both the water and fat signal. However, another 
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Figure 3.14 – The fat/water phantom  

The water and fat were shifted in the PE direction. In the navigator, there was 

discontinuity between the water (yellow) and the fat (blue). The variability increased 

when breathing was introduced. 
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linear solution, estimated by a referenceless method and plotted with a yellow line, 

reduced the ghost in both the fat and water regions (Figure 3.15).  

 

 

In the first experiment, in the single slice acquired, the content of fat and water 

varied across the RO direction, which led to two distinct regions of the navigator data 

throughout the RO: a region of all fat or a combination of both water and fat. In the 

second experiment, with rotated orientation and more slices, the distinction between 

water and fat occurred in the slice direction and the PE direction, which is collapsed in 

the navigator data. Thus, Figure 3.16 shows navigators from three slices that represent 

different scenarios. In a slice with water only, represented by the yellow line, the phase 

was linear, as expected. In a slice containing only fat (blue line), the phase was 

significantly shifted and nonlinear. The third navigator represents a PE projection at the 

slice marked by a red line, which included a mixture of fat and water; importantly, the fat 

and water signal were not separated in the RO direction as they were in the previous 

example. Here, the 0th order component was consistent with that of water, but the non-

linearity increased as the distance from isocenter increased caused by the simultaneous 

signal from both water and fat.  

Discussion: These two water/fat phantom experiments are different in two major ways. 

First, we see that the orientation of alternating water and fat signal impacts the navigator 

data in different ways. In the RO direction, fat signal can cause discontinuities in the 

Figure 3.15 – Ghost correction with failed fat suppression.

The navigator fit left residual ghost in both the water and the fat signal, while

the referenceless correction, which does not reflect the navigator data, corrected 

the ghost.

Navigator Referenceless

RO

P
h
a
s
e



 70 

phase, as seen in Figure 3.14. Whereas in the PE direction, the mixture of signal from fat 

and water affected the whole navigator, adding a non-linearity dependent of the distance 

from isocenter rather than the spatial location of the fat.  

 

 
Secondly, the two experiments represent the inconsistent fat suppression that is 

often achieved in breast DWI. We can relate the first scenario to an in vivo scan with poor 

fat suppression. In this case, the fat signal greatly impacts the navigator data, increasing 

the susceptibility to B0 changes and adding a large 0th order phase shift. The second 

experiment represents a case in which the breast anatomy is mostly fatty, and the fat 

suppression performed well. Even though the fat signal is sufficiently suppressed and 

barely visible in the image domain (see Figure 3.16), it contributes to a strong phase 

difference measured by the navigator (blue line). This may be caused by the sequence 

timing; the gradient reversal is used for fat suppression of the imaging data, but the 

navigator is acquired prior to these 180º refocusing pulses. When this small signal is 

mixed with the strong water signal, the water plays a much larger role in the navigator 

phase, especially the 0th order component, despite the small physical size of water region 

compared to the fat. However, the adipose signal still adds a non-linearity that can bias 

the navigator fit and cause residual ghosts.  

Figure 3.16 – Navigator through fat vs. water

Data is shown from three navigators. Navigator colors correspond to their spatial 

position in the T2-weighted image (left). The fat only (blue) was nonlinear and had a 

large phase offset. The navigator in water (yellow) was linear as expected. While the 

navigator through fat and water (red) was close to that of water only, it was slightly 

nonlinear and shifted. 
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Conclusion: Although the fat signal may appear to be suppressed in the image domain, 

the presence of adipose signal can largely shift the phase of the 3-line navigator, which 

may cause non-linearities where water and fat are mixed in the PE projection. The effect 

was especially large when simulated breathing was introduced, perturbing the system 

from its carefully shimmed state.  

Experiment 4 – The full phase navigator 

The full phase navigator is thought to correct for a time-varying ghost that is linear in 

space. Here this time-varying component was be characterized using simple phantom 

data and a full phase navigator. 

Methods: A single saline phantom was scanned in one side of the 16-channel breast coil 

with full FOV and no undersampling. For a full-phase navigator acquisition, the scan was 

repeated with phase encoding disabled. For every other line, a 1st-order phase error was 

estimated based on the line and its two surrounding lines averaged together. This 

corresponds to a three-line navigator that is repeated through time for the length of the 

echo train with the same timing as the main acquisition. 

Results: The 1st order phase error parameters are plotted through the echo train for 5 

consecutive slices with high signal measured by 4 different channels (Figure 3.17a). In 

this simple saline phantom, the 1st order phase error varied substantially over the echo 

train, especially in the beginning of the echo train. This time dependence was consistent 

across the slices and coils, except for a shift between two sets of coils, similar to the 

observations in Figure 3.10 above.  

 In Figure 3.17c, data from one slice were corrected with the solutions shown in 

Figure 3.17b, which compares the time-varying 1st order phase with three static estimates 

based on the three-line navigator, the average over the full phase navigator, and a 

referenceless method. The 3-line navigator solution closely resembled that measured at 

the beginning of the echo train, as one would expect. This correction left a clear residual 

ghost whereas the full phase average and the referenceless methods compared more to the 

latter part of the echo train and reduced the ghost. While these static estimates were 
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reasonably effective, applying the full phase 1st order correction further reduced the 

ghost. 

 

 

An example of an in vivo full phase navigator estimation from 3 slices is shown in 

Figure 3.18. Here, there was again a large variation at the beginning of the RO train that 

stabilized around kx = 20. However, the time course was less distinct, especially towards 

the end of the train where the full phase navigator estimated outlier values that suggest a 

fitting failure.  
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Figure 3.17 – The full phase navigator in phantom

The full phase parameters are plotted for 5 slices and 4 different coils with high signal 

(a). The full phase estimates are compared to the navigator, average of full phase 

over the echo train, and a referenceless solution (b). All corrections were applied for 

comparison (c). 
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Discussion: In the clean phantom case, the full phase 𝜅 estimates that sufficiently 

correct for ghosts distinctly resemble a dampened harmonic oscillator, which is consistent 

with eddy currents that quickly die off after the excitation. If one can reliably measure 

these effects, the dynamic correction better corrects for ghosts. However, in the in vivo 

case this estimation is complicated by respiratory motion and fat signal that may disrupt 

the phase measurement. We also see that the error increases towards the end of the RO 

train as the signal decays, especially in the in vivo data. Moreover, the full phase 

navigator is separated in time from every subsequent acquisition. Heating could cause a 

change in the eddy currents and repeating the full phase navigator throughout the scan 

adds significant scan time as it requires a full acquisition. Thus, a less accurate but more 

reliable correction should represent the majority of the readout, especially near the center 

of k-space, rather than the beginning of the train where the eddy current effect is likely 

strongest.  

Conclusion: The linear ghost parameters evolved over time in a way similar to that of 

eddy currents that quickly die off. Measuring the navigator soon after the excitation 

where the eddy current effect is greatest, may cause residual ghosts. 

3.3.2 The 2-dimensional ghost  
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Figure 3.18 – The full phase navigator in vivo.

The full phase parameters are plotted for a single coil and three slices (b) with high 

signal for a case with high SNR (b)
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Many advanced ghost correction methods assume that the linear ghost model is 

insufficient. In this experiment the 2D phase map was characterized and tested compared 

to a 1D correction.  

Methods: The CaliberMRI breast phantom was scanned at 3 T using the 16-channel 

Sentinelle breast using a standard axial SE-EPI, b = 0 s/mm2, and R = 2 undersampling. 

For a phase reference, an additional b = 0 s/mm2 acquisition was acquired with double 

FOV and fully sampled (R = 1). The reference scan was separated to make two full FOV 

images with fully sampled RO+ and RO- data. The 16 channels were combined using a 

SENSE R = 1 combination based on the sensitivity profiles, and a phase map was 

generated by comparing the two coil-combined image phase. Phase maps were fit to a 1-

dimensional surface (Φ = 	𝜙 + 𝜅𝑥) and a 2-dimensonal surface (Φ = 	𝜙 + 𝜅𝑥 + 𝜆𝑦 +
𝛾𝑥𝑦), which were applied to the tight FOV, R = 2 data and ACS lines before unaliasing 

with GRAPPA.  

  

 

Results: On the coil-combined, phase maps (Figure 3.19a), the 1D model estimated 𝜅 =
1.3131 and 𝜙 = −0.1105 (Figure 3.19b), and the 2-D model estimated 𝜅 = 1.3055, 

𝜙 = 0.0461, 𝜆 = 0.0785, and 𝛾 = 0.0068	 (Figure 3.19c), indicating that the phase 

contained a non-negligible y component. The resulting root sum of square images are 

Figure 3.19 – 2D phase mapping in phantom

The phase map (a) was measured on fully-sampled, double FOV data. It was fit to 1D 

(b) and 2D surfaces (c) and applied to the undersampled imaging data. The 2D model 

did not improve the ghost correction compared to the 1D model.
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shown in Figure 3.19 from both models, which shows that the 2-D phase correction did 

not improve the Nyquist ghosts. Note that Nyquist ghosts fall at FOV/4 in unaliased 

images based on the R = 2 undersampling.  

Discussion: Although the phase map seems to contain a y component, the 2D model 

did not improve the ghost correction compared to a simple 1D model. Moreover, phase 

mapping faces some other key challenges. For one, the 16 channels were combined in 

order to obtain a full phase map that could be reliably fit. This prevents the use of coil-

specific corrections, which may be especially important considering the bimodal coil 

dependence observed in Section 3.3.1, Experiment 2 above. Secondly, phase mapping 

requires the additional acquisition to obtain fully sampled RO+ and RO- sets. The 

acquisition of this reference is time consuming and can be complicated. For example, in 

this case, a fully sampled double FOV b = 0 s/mm2 image was used, which has 4 times 

the amount of distortion compared to the imaging data. A single b = 0 s/mm2 reference is 

practical, considering scan time, but does not account for changes in the ghost parameters 

or additional effects of eddy currents induced by diffusion encoding gradients.  

Conclusion: The Nyquist ghost phase was mostly linear in space. The 2D components 

were negligible in the image domain and measuring the 2D phase requires time 

consuming reference data and prevents a channel-specific correction. 

3.3.3 Nyquist ghosts and accelerated imaging  

EPI is typically acquired with some level of in-plane parallel imaging to reduce the echo 

spacing and scan time. Nyquist ghosts can affect both undersampled data and reference 

data, like autocalibration scans (ACS), which can have downstream effects on GRAPPA 

unaliasing etc. The purpose of this experiment was to understand the various artifacts 

caused by GRAPPA, ghosts, and combinations thereof.  

Methods: A modified Shepp-Logan phantom was simulated as if acquired with 8 

channels arranged in a circular pattern, including smooth sensitivity profiles, added 

complex noise, and undersampling for 1 ≤ R ≤ 4. 1st order ghost artifacts (𝜅 = 0.4, 𝜙 =
0) were added to either the undersampled data, ACS data, or both. Aliasing artifacts were 

simulated by randomly setting 20% of weights to 0.  
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Results: Figure 3.20 demonstrates the overall effect of uncorrected Nyquist ghosts in 

both the reference and the undersampled data. The ideal correction and unaliasing are 

shown in the top row. Notice that when the ACS data was not fully ghost corrected, it 

caused a GRAPPA aliasing artifact at FOV/2 (row 3). 

 

 

Discussion: This demonstrates that reliable and accurate ghost correction of all data is 

critical for high-quality images, especially if unaliasing comes downstream the pipeline 

from ghost correction. An iterative approach, alternating between ghost correction and 

other processing, may be useful but time consuming.  

Because Nyquist ghosts occur in the PE direction, ghosts and aliasing artifacts can 

get messy when the two are mixed together. Unaliasing errors are often mislabeled as 

Nyquist ghosts and vice versa. However, it is possible to tell them apart based on their 
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Bad GRAPPA 
+ ghost

Ghost in 
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Ghost in ACS

Ghost in both 

R = 1 R = 2 R = 3 R = 4

Figure 3.20 – Ghosts vs. aliasing artifacts

Various combinations of simulated ghosts and aliasing artifacts, which both occur in 

the PE direction. Importantly, residual ghosts in ACS data cause aliasing artifacts 

(row 3). White dots mark 1/2R intervals. 
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location in the image. For example, aliasing artifacts fall at 
¤7¥6 , while Nyquist ghosts in 

the undersampled data will fall at 
¤7¥,6 . 

Conclusion: Reliable ghost correction of both the ACS data and undersampled data is 

important for high quality unaliasing. Nyquist ghosts and aliasing artifacts are often mis-

diagnosed.  

3.4 Discussion  

The preliminary studies above were critical in the development of this work, creating a 

clear path forward in the correction of Nyquist ghosts in breast DWI. To review, these 

explorations found the following results:  

• Using a three-line navigator accounts for small, static B0 inhomogeneity by 

averaging over two RO+ lines acquired before and after a single RO- line.   

• The ghost parameters vary slowly across slices and bimodally across coils. Outlier 

correction parameters estimated by the navigator suggest a navigator failure. In 

these cases, the navigator data poorly represents the data itself. 

• Respiration causes dynamic changes in B0, which causes spatial shifts in PE in the 

image domain and slight variation of the navigator data. In the presence of 

breathing, separation between the navigator and ghosted data may lead to small 

residual ghosts.  

• While fat suppression may appear sufficient in the image domain, it can add 

deleterious phase shifts to the navigator data. These affects are even greater in the 

presence of respiration, which alters the B0 field.  

• The linear ghost parameters change through time, probably caused by short-lived 

eddy currents. While a full phase navigator correction most accurately corrects the 

ghosts, the measurement of such navigator is unreliable. Thus, it is important to 

account for the majority of the readout for ghost correction estimation, rather than 

just the beginning of the acquisition, as the 3-line navigator typically does.  
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• The RO+/RO- phase differences are mostly linear in space. Measuring the small 

2D components requires combination of channel data and does not seem to 

improve the ghost correction performance.   

• Accurate and complete ghost correction of reference data is critical for quality 

downstream reconstruction, like GRAPPA unaliasing and slice separation in 

SMS.  

To sum it up: in breast DWI the ghost artifact is mostly linear. However, the linear three-

line navigator is unreliable for the estimation of the 1st order correction parameters. The 

navigator is extremely sensitive to fat and is separated in time from the center of the 

echo.  

While there are numerous advance ghost correction methods that assume more 

complicated models, the ghosting problem seems to boil down to the unreliable nature of 

the 3-line navigator, rather than a failure to capture more complex behavior. This 

suggested the need for an alternative linear strategy that is consistent with 1) the center of 

the echo, and 2) the fat suppressed imaging data. Referenceless methods fulfill these 

criteria as they use the data itself to estimate the ghost correction by minimizing a 

specified cost function that corresponds to the ghost level. Additionally, these methods 

can be applied to a wide variety of data without the need of extra navigators, including 

reference data and independent slices, channels, and acquisitions.  

The success of referenceless methods can be dependent on the image geometry 

and the use of undersampling. Thus, several cost functions have been proposed, including 

image entropy, a singular value decomposition of k-space, and others that require manual 

ROI placement. In the exploration of the variable performance of these referenceless 

methods and the derivation of the ghost artifact in the image domain (Section 3.1), the 

idea for a novel referenceless method was developed. This method, Ghost/Object 

minimization (Chapter 4), is based on the predictable nature of the ghost in the image 

domain, including a sine and cosine signal modulation and a FOV/2 position.  
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Chapter 4: Ghost/Object Minimization: A Novel 

Referenceless Ghost Correction Method 

Illuminating the nature of the Nyquist ghost and understanding the failure of the standard 

3-line navigator in breast DWI guided the use of referenceless methods and the 

development of a new referenceless ghost correction. The method, called Ghost/Object 

(as in “ghost over object”), minimizes Nyquist ghosts using a cost function that relies on 

the sine and cosine modulation of the ghosted image. This development led to the 

publication of a paper (106) and a patent application (107) and contributed to 4 

conference abstracts (108–111).  

4.1 Formulation of Ghost/Object Minimization 

The cost function for Ghost/Object minimization (G/O) is calculated by taking the ratio 

of the magnitude of the measured image over a shifted copy, applying a 2D median filter 

for denoising, and summing over all pixels in the image domain as follows:  

𝑓�Èk2	^E =�𝐹V�É	,§ Ô |𝐼V�Wk(𝑥, 𝑦)||𝐼′V�Wk(𝑥, 𝑦)|Õ5,)
 [4.1] 

where 𝐹V�É	,§ refers to a 2D median filter applied to reduce image noise and 𝐼V�Wk(𝑥, 𝑦) 
is the measured image. 𝐼¸V�Wk(𝑥, 𝑦) refers to the measured image that is shifted by 

(,e`E)¤7¥Q,6  for 𝑗 from 0 to 𝑅 − 1 such that the object is aligned with the theoretical 

location(s) of the ghost(s), per Equation 3.9, and 𝐹𝑂𝑉) refers to the FOV in the PE 

direction. For practical purposes, 𝑗 can be restricted to the sum over 𝑗 = 0 and 𝑗 = 𝑅 − 1, 

which corresponds to the higher intensity ghosts located closest to the object.  

The summation is taken over the entire image and does not require selection of 

the object or ghost regions, however, any pixels in 𝐼′V�Wk(𝑥, 𝑦) with very low noise 

values may bias the cost function by adding an overly large value to the summation. 

Therefore, the 2D median filter, 𝐹V�É	,§, is applied to remove these outlier values.  

4.1.1 Justification for G/O minimization 
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The exact value of the cost function will depend on the geometry of the object, which 

will determine the amount of overlap between the ghost and the object in the PE FOV. 

Thus, it cannot be shown analytically that 𝑓�Èk2 is minimized when 𝜙 = 𝜅 = 0 for all 

conditions. However, by separately considering 𝜙 and 𝜅, the cost function can be 

analytically shown to be minimized in a ghost-free image in order to gain intuition about 

why it works. Consider the case in which k-space is fully sampled (𝑅 = 1) with one 

segment (𝑁k�� = 1), and the ghost only contains a 0th order component. While this 

situation can be understood to be impractical, it provides an illustration of the method. 

 

 

Case 1: 0th order ghost only (𝜿 = 𝟎,𝝓 ≠ 𝟎	) 
First plug Equation 3.9 into the cost function; for simplicity we assume 𝜅 = 0, 

temporarily ignore the median filter, and describe the discrete sum as a continuous 

integral over the image. 

𝑓�Èk2^E
= £ £ 𝐼3(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3 Ï𝑥, 𝑦 − 𝐹𝑂𝑉)2 Ò sin(𝜙) + 𝜖(𝑥, 𝑦)

𝐼3 Ï𝑥, 𝑦 − 𝐹𝑂𝑉)2 Ò cos(𝜙) + 𝑖𝐼(𝑥, 𝑦)sin(𝜙) + 𝜖 Ï𝑥, 𝑦 − 𝐹𝑂𝑉)2 Ò
¤7¥Q

3

¤7¥U

3
𝑑𝑦	𝑑𝑥 

[4.2] 
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Figure 4.1 Introducing Ghost/Object Minimization

Assume a non-overlapping linear ghost, as shown. We consider each region through 

PE (0 to a, a to b, etc.). 
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For any given position in 𝑥, the image can be broken into four parts over 𝑑𝑦, one 

region of pure ghost defined between 0 → 𝑎(𝑥), a region of overlapping object and ghost 

defined between 𝑎(𝑥) → 𝑏(𝑥) and 𝑐(𝑥) → 𝑑(𝑥), a region of pure object defined between 

𝑏(𝑥) → 𝑐(𝑥), and another region of pure ghost from 𝑑(𝑥) → 𝐹𝑂𝑉), where 𝑎, 𝑏, 𝑐, and 𝑑 

are functions of 𝑥 (demonstrated in Figure 4.1). Thus, the integral becomes: 

𝑓�Èk2	^E = £ ,£ 𝐼3(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3̧(𝑥, 𝑦)sin(𝜙) + 𝜖(𝑥, 𝑦)𝐼3̧(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼(𝑥, 𝑦)sin(𝜙) + +𝜖¸(𝑥, 𝑦) 𝑑𝑦
W(5)

3

¤7¥U

3

+ £ 𝐼3(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3̧(𝑥, 𝑦)sin(𝜙) + 𝜖(𝑥, 𝑦)𝐼3̧(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼(𝑥, 𝑦)sin(𝜙) + +𝜖¸(𝑥, 𝑦) 𝑑𝑦
�(5)

W(5)

+ £ 𝐼3(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3̧(𝑥, 𝑦)sin(𝜙) + 𝜖(𝑥, 𝑦)𝐼3̧(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼(𝑥, 𝑦)sin(𝜙) + +𝜖¸(𝑥, 𝑦) 𝑑𝑦
�(5)

�(5)

+ £ 𝐼3(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3̧(𝑥, 𝑦)sin(𝜙) + 𝜖(𝑥, 𝑦)𝐼3̧(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼(𝑥, 𝑦)sin(𝜙) + +𝜖¸(𝑥, 𝑦) 𝑑𝑦
É(5)

�(5)

+ £ 𝐼3(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3̧(𝑥, 𝑦)sin(𝜙) + 𝜖(𝑥, 𝑦)𝐼3̧(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼(𝑥, 𝑦)sin(𝜙) + +𝜖¸(𝑥, 𝑦)
¤7¥Q

É(5)
𝑑𝑦-𝑑𝑥 

[4.3] 

Where 𝐼3̧(𝑥, 𝑦) = 𝐼3 ©𝑥, 𝑦 − ¤7¥Q, ¬, 𝜖¸ = 𝜖 ©𝑥, 𝑦 − ¤7¥Q, ¬, and we describe the inverse 

cost-function to simplify the notation. Due to the N/2 nature of the ghost, the regions 0 →
𝑎(𝑥) and 𝑏(𝑥) → 𝑐(𝑥) can be combined; we can also simplify them by 1) recognizing 

that some of the terms are 0 in the specified region, and 2) assuming the noise is 

negligible, i.e.:  

£ |𝐼3(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3̧(𝑥, 𝑦)sin(𝜙) + 𝜖(𝑥, 𝑦)||𝐼3̧(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3(𝑥, 𝑦)sin(𝜙) + 𝜖¸(𝑥, 𝑦)|𝑑𝑦
W(5)

3

=	 £ |𝐼3(𝑥, 𝑦)cos(𝜙) + 𝜖(𝑥, 𝑦)||𝐼3(𝑥, 𝑦)sin(𝜙) + 𝜖¸(𝑥, 𝑦)| 𝑑𝑦	 ≈
W(5)

3
£ |cot(𝜙)|𝑑𝑦	W(5)

3
 

[4.4] 

and 
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£ |𝐼3(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3̧(𝑥, 𝑦)sin(𝜙) + 𝜖(𝑥, 𝑦)||𝐼3̧(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3(𝑥, 𝑦)sin(𝜙) + 𝜖¸(𝑥, 𝑦)| 𝑑𝑦
�(5)

0(1)
=	 £ |𝑖𝐼3̧(𝑥, 𝑦)sin(𝜙) + 𝜖(𝑥, 𝑦)||𝐼3̧(𝑥, 𝑦)cos(𝜙) + 𝜖¸(𝑥, 𝑦)|𝑑𝑦	 ≈

�(5)

�(5)
£ |tan(𝜙)|𝑑𝑦	�(5)

�(5)
 

[4.5] 

Thus, we can rewrite the cost function as 

𝑓�Èk2^E ≈ £ ,£ |cot(𝜙)|W(5)

3
+ |tan(𝜙)|𝑑𝑦¤7¥U

3

+ £ |𝐼3(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3̧(𝑥, 𝑦)sin(𝜙)||𝐼3̧(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3(𝑥, 𝑦)sin(𝜙)|
�(5)

W(5)
𝑑𝑦

+ £ |𝐼3(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3̧(𝑥, 𝑦)sin(𝜙)||𝐼3̧(𝑥, 𝑦)cos(𝜙) + 𝑖𝐼3(𝑥, 𝑦)sin(𝜙)|
É(5)

�(5)
𝑑𝑦

+ £ |𝜖(𝑥, 𝑦)||𝜖¸(𝑥, 𝑦)|𝑑𝑦
¤7¥Q

É(5)
-𝑑𝑥

≈ £ 3£ |cot(𝜙)|W(5)

3
+ |tan(𝜙)|𝑑𝑦¤7¥U

3

+ £ 4cos(𝜙) + 𝑖 𝐼3̧(𝑥, 𝑦)𝐼3(𝑥, 𝑦) sin(𝜙)44𝐼3̧(𝑥, 𝑦)𝐼3(𝑥, 𝑦) cos(𝜙) + 𝑖 sin(𝜙)4
�(5)

W(5)
𝑑𝑦

+ £ 4cos(𝜙) + 𝑖 𝐼3̧(𝑥, 𝑦)𝐼3(𝑥, 𝑦) sin(𝜙)44𝐼3̧(𝑥, 𝑦)𝐼3(𝑥, 𝑦) cos(𝜙) + 𝑖 sin(𝜙)4
É(5)

�(5)
𝑑𝑦 + £ |𝜖(𝑥, 𝑦)||𝜖¸(𝑥, 𝑦)|𝑑𝑦

¤7¥Q

É(5)
5𝑑𝑥 

[4.6] 

where we have again assumed 𝜖(𝑥, 𝑦) ≈ 0 in the signal regions 𝑎(𝑥) → 𝑏(𝑥) and	𝑐(𝑥) →
𝑑(𝑥). 
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Now we can evaluate the limits of each region; it is sufficient to consider 𝜙 = 0, 

𝜙 = ± -6, and 𝜙 = ± -, due to the sinusoidal behavior and the absolute value. In the 

overlap regions:  

4cos(𝜙) + 𝑖 𝐼3′(𝑥, 𝑦)𝐼3(𝑥, 𝑦) sin(𝜙)44𝐼3′(𝑥, 𝑦)𝐼3(𝑥, 𝑦) cos(𝜙) + 𝑖sin(𝜙)4 =

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧ 1𝐼3′(𝑥, 𝑦)𝐼3(𝑥, 𝑦)

 =  
𝐼3(𝑥, 𝑦)𝐼3′(𝑥, 𝑦) for 𝜙 = 0

1√2 Ï1 + 𝐼3′(𝑥, 𝑦)𝐼3(𝑥, 𝑦)Ò1√2 Ï𝐼3′(𝑥, 𝑦)𝐼3(𝑥, 𝑦) + 1Ò
 =  1 for 𝜙 = ±𝜋4

𝐼3′(𝑥, 𝑦)𝐼3(𝑥, 𝑦)1  =  
𝐼3′(𝑥, 𝑦)𝐼3(𝑥, 𝑦) for 𝜙 = ±𝜋2

 [4.7] 

In the ghost- and object-only regions: 

|cot(𝜙)|+ |tan(𝜙)| =
⎩⎪⎨
⎪⎧∞+ 0 = 	∞												for		𝜙 = 0
1 + 1 = 2											for		𝜙 = ±𝜋4
0 +∞ = 	∞									for		𝜙 = ±𝜋2 	

 [4.8] 

Finally, we can assume the noise-only regions are negligible due to the median filter, 

which removes salt and pepper noise: 𝐹V�É,§ © |=(5,))||=¸(5,))|¬ ≈ 0 

It is clear that the regions that dominate the magnitude of the cost function are the 

ghost- and object- only regions. Thus:  

𝑓�Èk2^E ≈ £ £ |cot(𝜙)|+ |tan(𝜙)|𝑑𝑦 𝑑𝑥W(5)
3

¤7¥U
3 = 2𝐴7�e��2(|cot(𝜙)|+ |tan(𝜙)|) [4.9] 

where  𝐴7�e��2 = 𝐴bpÈk2 is the number of pixels in the object- or ghost-only image. This 

inverse cost function approaches ∞ at 𝜙 = 0, which corresponds to the ghost-free image, 

and 𝜙 = -,, which manifests as a ghost-only image. Therefore, 𝑓�Èk2 has a unique 

minimum at 𝜙 = 0, when the image is ghost-free, if 𝜙 is restricted between 
^-, < 𝜙 < -,. 

Case 2: 1st order ghost only (𝝓 = 𝟎,𝜿 ≠ 𝟎) 
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Similarly, if we consider 𝑓�Èk2 as a function of 𝜅 and let 𝜙 = 0,  

𝑓�Èk2^E ≈ £ 3£ 4cot Ï2𝜋𝜅𝑥𝑁5 Ò4W(5)

3
+ 4tan Ï2𝜋𝜅𝑥𝑁5 Ò4𝑑𝑦¤7¥U

3

+ £ 4cos ©2𝜋𝜅𝑥𝑁5 ¬ + 𝑖 𝐼3̧(𝑥, 𝑦)𝐼3(𝑥, 𝑦) sin ©2𝜋𝜅𝑥𝑁5 ¬4
4𝐼3̧(𝑥, 𝑦)𝐼3(𝑥, 𝑦) cos ©2𝜋𝜅𝑥𝑁5 ¬ + 𝑖 sin(2𝜋𝜅𝑥𝑁5 )4

�(5)

W(5)
𝑑𝑦

+ £ 4cos ©2𝜋𝜅𝑥𝑁5 ¬ + 𝑖 𝐼3̧(𝑥, 𝑦)𝐼3(𝑥, 𝑦) sin ©2𝜋𝜅𝑥𝑁5 ¬4
4𝐼3̧(𝑥, 𝑦)𝐼3(𝑥, 𝑦) cos ©2𝜋𝜅𝑥𝑁5 ¬ + 𝑖 sin(2𝜋𝜅𝑥𝑁5 )4

É(5)

�(5)
𝑑𝑦

+ £ |𝜖(𝑥, 𝑦)||𝜖¸(𝑥, 𝑦)|𝑑𝑦
¤7¥Q

É(5)
5𝑑𝑥 

[4.10] 

Again, in the ghost- and object-only regions, the value within the integral approaches ∞, 

so we approximate the cost function as 𝑓�Èk2^E ≈ ∫ ∫ >cot(,-æ5�U )>+W(5)3¤7¥U3>tan(,-æ5�U )>𝑑𝑦 𝑑𝑥. Now 𝑓�Èk2^E approaches ∞ in the ghost-free image where 𝜅 = 0 but 

also approaches ∞ where 	𝑋 = 0  and for some other values of 𝜅 and 𝑋. However, due to 

noise in the image, the practical values of >cot ©,-æ5�U ¬>+ >tan ©,-æ5�U ¬> never reach ∞. 

Therefore, because limæ→3 >cot ©,-æ5�U ¬> + >tan ©,-æ5�U ¬> = ∞ for all values of 𝑋, taking the 

integral over 𝑋 yields a global maximum at 	𝜅 = 0 and local maxima at the other values 

where >cot ©,-æ5�U ¬> + >tan ©,-æ5�U ¬> = ∞, theoretically.  

This can be shown graphically as well in Figure 4.2. First consider the case where 

𝜙 = 0 and choose a reasonable range for x and κ, -96 < x < 96 and -1.5 < 𝜅 < 1.5. It can 

be seen in Figure 4.2a that 𝜅 = 0 minimizes the Ghost/Object for all values of x. Thus, 

the sum over x is also minimized at 𝜅 = 0, as shown in Figure 4.2b. Next, consider the 

case in which κ = 0 and choose -96 < x < 96 and –π/2< 𝜙 < π/2. Again, for all values of 

x, 𝜙 = 0 minimizes the Ghost/Object, as seen in Figure 4.2c-d.  
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To summarize, due to the sine and cosine modulation of the signal intensity in the 

ghost and object, respectively (Equation 3.9), the range of the inverse cost function for 

G/O minimization, 𝑓�Èk2^E
 
, spans from some finite positive number, which we will call 

	𝐶, to ∞ in the ghost- and object-only regions, where	𝐶 depends on the size of the object-

only region. Within the region of overlap, 𝑓�Èk2^E
 
also spans between two finite numbers 

that depend on the dynamic range of the object signal and the size of the object region. 

Therefore, it is reasonable to assume that the cost function is dominated by the ghost-only 

region, and thus has a minimum when 	𝜅 = 𝜙 = 0, which characterizes the ghost-free 

image.  

Numerical Demonstration of G/O minimization 

In the more realistic case where the ghost consists both a linear and constant terms, a 

simulation of a Shepp-Logan phantom can be used to demonstrate that there is also a 

local minimum at 𝜅 = 0 and 𝜙 = 0 for various degrees of ghost/object overlap and PE 

undersampling. A linear ghost was added to each ideal phantom for 𝜅 from -2 to 2 in 

steps of 0.1 and 𝜙 from -0.5 to 0.5 in steps of 0.02. In this study, the Ghost/Object cost 

a

b

c

d

! "

G
/O

G
/O

Figure 4.2 Ghost/Object metric for simple case

When ! = 0, we can show that G/O is minimized for " = 0 (a and b). Similarly, when "

= 0, we can show that G/O is minimized for ! = 0 (c and d).
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function was again minimized in the ideal case where 𝜅 = 0 and 𝜙 = 0. (Figure 4.3a). 

Similarly, the Ghost/Object cost function was minimized at 𝜅 = 𝜙 = 0 for 

undersampling from R = 1 to R = 4 (Figure 4.3b). *Note: An alternative to dealing with 

undersampling is to measure the G/O metric on unaliased images after ghost correction; 

in this case the shift factors should be chosen to align with the ghost. In this way, 

Ghost/Object is not limited by undersampling. However, incorporating GRAPPA 

unaliasing into the minimization is time consuming. 
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Figure 4.3 – Testing G/O with overlap and undersampling

The G/O metric is shown for Shepp-Logan simulations with varying degrees of ghost 

and object overlap (a) and undersampling from R = 1 to 4 (b). The global minimum 

occurs at ! = # = 0 for all cases in the Shepp-Logan phantom, confirming that 

Ghost/Object minimization was not sensitive to undersampling or tight FOVs. 

However, the exact value of the cost function will depend on the geometry and signal 

variation in y. 
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4.2 Nyquist Ghost Correction of Breast DWI using Referenceless 

Methods 

This work was previously published in Magnetic Resonance in Medicine, 2019; 81:2624-

2631. Jessica A McKay, Steen Moeller, Lei Zhang, Edward J Auerbach, Michael T 

Nelson, Patrick J Bolan 

4.2.1 Introduction 

DWI of the breast is typically acquired using single-shot spin-echo (SS SE) EPI. Due to 

the alternating nature of EPI readout (RO) lines, eddy currents, imperfect gradients, and 

timing errors can cause inconsistencies between k-space lines of opposite polarity 

(RO+/RO-), which manifest as Nyquist, or N/2, ghosts. Nyquist ghosts are often 

corrected by acquiring a three-line navigator to measure the difference between 

alternating RO lines, which is modeled as a linear phase error. While the three-line 

navigator generally performs well for brain imaging, it often fails in body imaging due to 

insufficient fat suppression and increased B0 inhomogeneity. Several other ghost 

correction methods have been proposed including a full-phase navigator (112), 2D phase-

mapping approaches (92–95,113–115), acceleration-based techniques (96,98,99), 

methods that enforce low-rank structure of multi-channel data (38,40), and a class of 

methods, termed referenceless methods, that use the EPI data for self-correction (40,100–

103,116,117). 

These referenceless methods work by defining a cost function that is minimized 

when the data is ghost-free. The “Entropy” method (100,101,116) uses the image entropy 

after a 2D Fourier Transform as a heuristic cost function. The “SVD” method (102) 

defines a cost function based on a singular value decomposition of k-space after 

rearranging into GRAPPA-like kernels. Referenceless methods may be advantageous 

because they do not require the acquisition of any additional navigator or reference data, 

potentially allowing for decreased acquisition time and/or shortened TE, and easy 

integration with a wide range of acquisition strategies, including retrospective data. 

Because these techniques do not rely on coil sensitivity profiles, they should be suitable 

for combination with acceleration techniques, like in-plane parallel imaging (PI) and 
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simultaneous multislice acquisition (SMS) (33,36,104,105); however, previous reports 

have suggested that the image-space-based referenceless methods may be limited by 

aliasing (100,102). Additionally, because they are data-driven, they may be limited by the 

low SNR of high b-values and high resolution DWI. 

In this work we compare the performance of the standard 3-line navigator with 

referenceless methods for Nyquist ghost correction of breast DWI. We investigate 

previously proposed methods Entropy and SVD, introduce a referenceless method called 

Ghost/Object minimization (G/O), and assess a combination of all three. We also 

describe an iterative approach that allows these referenceless methods to be used in 

combination with PI. The methods are compared first using simulated data to assess their 

sensitivity to noise, and subsequently in an in vivo study to compare overall performance. 

4.2.2 Methods 

Linear ghost model and correction 

Nyquist ghosts arise due to differences between k-space lines with positive and negative 

polarity. The phase difference is often modeled in 𝑥-𝑘) hybrid space as a 1st order 

polynomial: 𝛿 = -æ�U 𝑥 + 𝜙, where 𝑥 refers to the discrete position in the RO dimension of 

the spatial domain, 𝜙 is a spatially constant phase shift between the RO+ and RO- lines, 

𝜅 characterizes the slope (𝜅 = 1	corresponds to a one pixel shift between RO+ and RO- 

in k-space), and 𝑁5 is the number of RO points. According to the Fourier shift theorem, 

and similarly described in Bernstein et al. (23), an image measured with SS SE-EPI can 

be described as:  

𝐼V�Wk(𝑥, 𝑦) = 𝐼3(𝑥, 𝑦) cos Ï𝜋𝜅𝑥𝑁5 + 𝜙Ò + 𝑖𝐼3̧(𝑥, 𝑦) sin Ï𝜋𝜅𝑥𝑁5 + 𝜙Ò + 𝜖(𝑥, 𝑦) [4.11] 

where 𝐼3(𝑥, 𝑦) is the ideal, ghost-free image in the RO and PE directions, respectively 

and 𝜖(𝑥, 𝑦) is random thermal noise. The prime operator, ′, indicates a circular shift in the 

image domain such that 𝐼3̧(𝑥, 𝑦) = 𝐼3 ©𝑥, 𝑦 ± ¤7¥, ¬. In the case of multi-shot or PE-

undersampled acquisitions, Equation 4.11 becomes less straightforward; the 
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reconstructed image will contain multiple replicas of the object (ghosts) at locations 

given by:  

𝐼3̧(𝑥, 𝑦) = � 𝐼3 Ô𝑥, 𝑦 ± (2𝑗 + 1)𝐹𝑂𝑉2𝑁k��𝑅 Õ
�GFB6^E
es3

 [4.12] 

where 𝑁k�� is the number of segments and 𝑅 is the PE-undersampling factor. The ghosts 

will have an additional spatially dependent signal modulation that varies with 𝑁k�� and 

sensitivity profiles. 

Nyquist ghosts are commonly corrected using a three-line navigator (Method A) 

through 𝑘) = 0 with polarity RO+/RO-/RO+. The linear phase difference between the 

positive and negative lines (𝛿) is fit in hybrid space to determine the correction 

parameters 𝜅 and 𝜙 (23,105,118). In this work, the referenceless methods were also 

applied as a first order correction by estimating 𝜅 and 𝜙 solutions that minimize the cost 

function 𝑓�Èk2(𝜙, 𝜅). The cost functions were defined as follows: “Entropy” (Method B) 

refers to the image entropy in the spatial domain, measured using MATLAB’s 

(MathWorks, Natick, MA) “entropy” function (100,101,116). For “SVD” (Method C), 

single-channel k-space was reorganized into GRAPPA-like kernels before performing 

singular value decomposition and summing over the tail of the singular values (102). For 

Method D, we propose a ghost correction called “Ghost/Object minimization” (G/O), 

which is described in the following section. Finally, the “Median” solution (Method E) 

was defined as the median of the (𝜙, 𝜅) values from the other three referenceless methods 

(B, C, and D). 

Ghost/Object minimization theory 

The cost function for the newly proposed Ghost/Object minimization (G/O, Method D) is 

calculated by taking the ratio of the magnitude of the measured image over one or more 

shifted copies, applying a 2D median filter, and summing over the entire ratio image in 

the image domain:  

𝑓�Èk2	^E =�𝐹V�É	,§ Ô |𝐼V�Wk(𝑥, 𝑦)||𝐼¸V�Wk(𝑥, 𝑦)|Õ5,)
 [4.13] 
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where 𝐼¸V�Wk(𝑥, 𝑦) is the sum of copies of the measured image, shifted to the expected 

location(s) of the ghost(s) as described above. The summation is taken over the entire 

image and does not require selection of the object or ghost regions, however, any pixels 

in 𝐼¸V�Wk(𝑥, 𝑦) with very low noise values may bias the cost function by adding an overly 

large value to the summation. Thus, a 2D median filter, 𝐹V�É	,§, is applied to remove 

these outlier values. For simplicity, the summation in our implementation includes only 

the two ghosts (𝑗 = 0 and 𝑗 = 𝑅 − 1) that are located closest to the object, which tend to 

have the largest intensity. 

While the exact value of the cost function will depend on the image, it can be 

shown numerically that the region of the image containing the object without any 

overlapping Nyquist ghost dominates the cost function when κ and ϕ are near the correct 

solution. Because of the sine and cosine modulation of the signal intensity in the ghost 

and object (Equation 4.11), the inverse cost function can be approximated as: 

𝑓�Èk2	^E ≈ � 4cot Ï2𝜋𝜅𝑁5 + 𝜙Ò4
5,)JKLFMN

 [4.14] 

where the sum is taken over the region of the measured image that contains only pure 

object and the noise is considered negligible. Put another way, it is clear that 𝑓�Èk2^E 

approaches ∞ when 𝜙	 = 	𝜅	 = 	0. Therefore, 𝑓�Èk2 is minimized in the ghost‐free image. 

Simulation 

To simulate the effect of varying noise, a synthetic image was generated in MATLAB 

(modified Shepp-Logan (119)) and modified with a linear ghost artifact prior to adding 

noise. One hundred different phase values were randomly selected, with parameters in 

practical ranges ([−1.5 < 𝜅 < 1.5] and [−0.3 < 	𝜙 < 0.3]), and Gaussian, complex 

noise was added to linearly sample 25 different SNR levels for each set of ghost 

parameters, where 𝑆𝑁𝑅 = 〈�STU〉3.ÂÂ∗C¡JDGF, 〈𝑆VW5〉 is the mean image intensity in the region of 

maximum signal (the phantom rim), and 𝜎 È_k� is the standard deviation of the noise 

magnitude (120). The cost functions were calculated on the noisy data for Entropy, SVD, 

and G/O over a multi-resolution discrete search space. The solutions for each 
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minimization were used to correct the simulated ghost on the noise-free data and the 

RMS error was measured between the ideal and ghost-corrected images and averaged 

over all 100 trials for each noise level.   

Data acquisition  

Single-shot 2D SE-EPI DWI was acquired under IRB-approved protocols from 41 female 

subjects including 15 clinical patients undergoing breast cancer screening (age 

min/med/max = 40/52/68), 13 patients with biopsy-proven cancer receiving MRI for 

treatment monitoring (28/47/72), and 13 healthy volunteers (18/21/66). Four subjects 

undergoing screening had silicone implants in one or both breasts. All subjects were 

positioned headfirst prone in a Siemens Prismafit 3T scanner using a 16-channel 

Sentinelle breast coil. Diffusion images were acquired following the protocol used in the 

clinical trial ACRIN 6698, with TR = 8000 ms and TE 51 ms for monopolar diffusion (12 

participants) or 74 ms for bipolar diffusion (29 participants), 36-50 4 mm axial slices 

with 320 x 320 mm in-plane FOV at 1.7 x 1.7 mm resolution, right-left phase encoding, 

in-plane undersampling of R = 3, 6/8 partial Fourier, SPAIR fat suppression, and total 

acquisition time ~5 minutes (121). One of the following three diffusion schemes was 

used to sample three orthogonal diffusion directions for each subject: b = 0, 100, 600, and 

800 s/mm2 (5, 9, 9, 9 averages = 32 volumes) [21 participants]; b = 0, 100, 600, and 800 

s/mm2 (4, 6, 6, 6 averages = 22 volumes) [5 participants]; b = 0, 100, and 800 s/mm2 (5, 

9, 9 averages = 23 volumes) [15 participants]. A 3-line navigator was acquired with phase 

encoding disabled for each coil, slice, and b-value/diffusion direction and for both the 

autocalibration scan (ACS lines) and undersampled data.  

T1-weighted anatomical images were acquired using a 3D VIBE sequence (RF-

spoiled, 3D gradient echo) with fat suppression. 

Image reconstruction and ghost correction  

Both ACS lines and undersampled data were reconstructed off-line with per-acquisition, 

per-coil, and per-slice ghost correction, followed by GRAPPA unaliasing (30). For the 3-

line navigator correction (Method A), the phase difference between the center line and 

average of the 1st and 3rd lines of each navigator was smoothed with a Savitzkey-Golay 
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filter (sgolay, MATLAB), weighted by the signal intensity to the fourth power, and fit to 

a first-order polynomial in x-ky hybrid space.  

The referenceless methods were first applied to the low-resolution ACS lines 

using a multi-resolution discrete search centered at 𝜙 = 0 and 𝜅 = 0.6 in MATALB to 

determine 𝜙lo� and 𝜅lo�. The corrected ACS lines were used to calculate the GRAPPA 

weights. 𝜙lo� and 𝜅lo� were also applied as an initial correction for the undersampled 

diffusion-weighted data; to refine 𝜙 and 𝜅 a second iteration was performed using a non-

linear minimization (fminsearch) including GRAPPA unaliasing in each step: i.e. a 

candidate(𝜙, 𝜅) correction was performed on each channel of the undersampled data 

before GRAPPA unaliasing so the cost function could be evaluated on the unaliased 

reconstructed image.  

Method D (Median) consisted of a combination of the four referenceless methods 

by taking the median of 𝜙 and 𝜅 from each method to reconstruct both ACS and 

undersampled data.  

Assuming a monoexponential decay diffusion model, ADC maps were generated 

using a pixel-by-pixel linear fit of the natural log of the signal intensity across b-values.  

Analysis  

Due to the N/2 nature of Nyquist ghosts, R = 3 undersampling, and symmetric anatomy 

of axial breasts images, a large portion of the residual ghosts falls along the midline 

between the right and left breasts (Figure 4.4). Thus, the signal level of the background 

region was used as a surrogate measurement of the ghost level in the full image. To 

measure the signal in the background region, the T1-weighted anatomical image was 

resampled to match the DWI image matrix, thresholded, and dilated to automatically 

create a mask of object and background; all area posterior to the chest wall was 

automatically classified as object. We also measured the noise level for each case based 

on the average signal intensity of noise-only corner regions of the volume (Figure 4.4). 

We defined the ghost intensity for each method, acquisition, and subject over the whole 

volume as the average signal in the background region compared to the average noise 

level.  
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To compare the ghost correction performance, the whole-volume ghost 

measurements were averaged for each subject across averages at each b-value, and then a 

linear mixed model was applied with ghost correction method, b-value, and their 

interaction as covariates, adjusting for body mass index (BMI). A pairwise comparison 

was made between each correction method based on the model-estimated ghost intensity. 

To control type I error for multiple comparisons, Bonferroni correction was applied, and 

a two-sided p-value < 0.005 (0.05/10) was considered statistically significant for pairwise 

comparisons among five methods. The ghost intensity estimates were also compared 

between methods on a per-b-value basis in a pairwise way; statistical significance was set 

to P < 0.00125 (0.05/40) based on Bonferroni correction. SAS system (version 9.4; SAS 

Institute, Cary, North Carolina) was used in all statistical analyses. 

4.2.3 Results  

Figure 4.5 demonstrates the performance of the referenceless methods with increasing 

levels of SNR. While the error increases at lower levels of SNR for all four methods, all 

four referenceless methods are tolerant to noise down to an SNR levels of about 3–5; 

Figure 4.4 – Measurement of ghost levels

Nyquist ghosts in a b = 0 s/mm2 image (A) can be seen in the background region 

between the breasts. The T1-weigthed anatomical image (B) is used to create an object 

mask, which is applied to the b = 0 s/mm2 image (C). The signal in the background 

region (D) reflects the intensity of the residual ghost. Red boxes indicate the regions 

used to measure the average noise level in root sum of squares images.

b = 0 s/mm2 DWI
T1-weighted 
anatomical

Object Mask Background Signal

A B

C D
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entropy is most sensitive to noise, followed by SVD, Median, and finally G/O. This 

sensitivity is reflected in the shape of the cost functions (example in Figure 4.5 inset). As 

SNR decreases, the minimum regions spread out and additional local minima develop 

that do not correspond to the ghost-free image, especially for Entropy and SVD. While all 

three referenceless cost functions have clear global minima at low noise levels, the cost 

functions vary in shape, especially as the noise level increases, suggesting that they each 

contain some unique information. 

 

 

The performance of all five ghost correction methods varied across cases and 

slices. The 3-line navigator tended to fail more frequently than the referenceless methods 

in the 41 breast cases tested. An example is shown in Figure 4.6 that represents a typical 

case where the 3-line navigator failed and the referenceless methods significantly reduced 

the ghost at both b = 0 and b = 800 s/mm2, as well as the resulting ADC map.  

Figure 4.5. Simulation of noise effect on cost functions

This plot shows the accuracy of each method, averaged over 100 trials, for increasing 

SNR levels. Example images are shown for 4 (of 25 tested) sample SNR values. The 

inset plots show the cost functions for a single trial at two SNR levels, indicated on the 

x-axis by * and °. With decreasing SNR, additional local minima develop, and minimum 

regions spread out. White and red circles indicate the correct and estimated ghost 

parameters, respectively. 
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The overall effects of ghost correction method are shown in Figure 4.7, which 

plots the ghost intensities measured over the whole volume for each subject and 

acquisition. The mean ghost levels estimated according to the adjusted linear mixed 

model are overlaid including 95% confidence intervals. All four referenceless methods 

generally reduce ghost levels compared to the standard approach. According to the 

adjusted linear mixed model, the performance of all four referenceless methods (B-E) is 

statistically superior (p ≤ 0.0002) to the standard linear correction (A). While there is no 

statistical difference between the performance of the entropy, SVD, and G/O 

referenceless methods (B-D), the median combination of referenceless methods (E) is 

estimated to significantly outperform any single referenceless method alone (p < 0.0001).  
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Figure 4.6. Single-slice DWI from two example cases

A single acquisition of b = 0 and 800 s/mm2 images and an ADC map are shown. The 

example is chosen as a representative case in which the referenceless methods 

outperform the 3-line navigator. Scaled to highlight Nyquist ghosts.  
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The mean ghost intensities for each method separated by b-value according to the 

full linear mixed model are plotted in Figure 4.8; p-values less than 0.00125 are 

indicated. The mean ghost intensity of all referenceless methods (B-E) is lower than that 

of the standard 3-line navigator at all four b-values (P < 0.001). The differences between 

entropy, SVD, and G/O referenceless methods are not statistically significant regardless 

of b-value. The median method (E) yields the lowest ghost intensity value at all four b-

values, however, E only outperforms B-C with statistical significance compared to 

Entropy and SVD at b = 0 s/mm2 and to Entropy at b = 100 and 800 s/mm2.  
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Figure 4.7 – Whole-volume ghost intensity plotted over method

Colored points indicate ghost intensity measured over the volume of each subject and 

acquisition; color indicates b-value. The black circles indicate the ghost intensities 

estimated according to the adjusted linear mixed model with 95% confidence intervals. 

Plotted over two y-scales for detail. 
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4.2.4 Discussion 

One potential source of Nyquist ghosts is eddy currents induced by the diffusion 

gradients. The 3-line navigator is independent of b-value because it is acquired before 

diffusion weighting is applied and cannot correct for eddy currents caused by the 

diffusion gradients. The referenceless methods depend on the diffusion-weighted data 

and do include effects from the diffusion gradients, but they may be more sensitive to the 

signal loss at high b-values. We have shown here, however, that all four referenceless 

methods perform well in low SNR down to ~3-5 in simulated phantom data and 

outperform the 3-line navigator at all four b-values up to b = 800 s/mm2. If used for 

images with even lower SNR (e.g. very high resolution or large b-values), adding 

additional denoising filters could improve the performance of all the referenceless 

methods. 

All five ghost correction methods estimated and applied two linear parameters on 

a per-coil, per-slice, and per-acquisition basis. In a small number of cases none of the 

ghost correction methods fully suppress the ghost, suggesting that it may be necessary to 

use higher-order correction. The referenceless methods may be extended to include 

higher-order parameters or correction that varies over the RO train if the necessary 
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Figure 4.8 – Ghost intensity by method and b-value

Ghost intensity and its 95% confidence interval estimated by the linear mixed model 

given b-value and ghost correction method. Threshold for statistical significance is set 

to P < 0.00125 based on Bonferroni’s method for multiple comparisons. 
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correction can be modeled by a small number of parameters. However, the computational 

time will quickly grow as the model increases in complexity.  

 The referenceless methods represent a data-driven approach to correct Nyquist 

ghosts. They can be applied retrospectively to a wide variety of data acquisitions without 

the need for any additional reference scan as methods like phase labeling for additional 

coordinate encoding (PLACE) and phase mapping require (92–95,113–115). Ghost 

correction by referenceless methods also does not rely on coil-sensitivity profiles, as 

methods like phase array ghost elimination (PAGE) do (96,98,99), and therefore preserve 

all information about coil-sensitivity for the purpose of maximizing acceleration. 

Additionally, by removing the three-line navigator, it may be possible to shorten the TE. 

However, one limitation of the referenceless methods is the increased computational 

requirement for optimization of the nonlinear cost functions. In our implementation, SVD 

is the slowest referenceless method; a full static SVD reconstruction takes about 1.3 times 

longer than the three-line navigator correction and further increases to about 100 (G/O) to 

300 (SVD) times when the iterative approach, which includes GRAPPA unaliasing in the 

cost function minimization, is used to determine dynamic corrections. It should be 

possible to reduce computation requirements to clinically practical times with further 

optimization of the processing. 

While the summation in Equation 4.13 is performed over the entire image, the 

cost function is dominated by the object-only region due to the sine and cosine signal 

modulation. While the method does not explicitly select regions of interest, it could be 

limited by the amount of object/ghost overlap if the object lacks signal variation in the PE 

direction, which would flatten the shape of 𝑓�Èk2(𝜙, 𝜅). Additionally, G/O requires the 

removal of outlier values prior to taking the summation, which is not necessary for 

Entropy or SVD. In this implementation we removed these outliers by applying a 2D 

median filter, which also produces some denoising in 𝑓�Èk2(𝜙, 𝜅). While this filtering 

does add a small bias to the comparison of the referenceless methods, median filtering 

did not improve the entropy metric in our data and cannot be used with SVD as it 

requires complex data. However, all of the methods used, including the linear navigator, 
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may be further optimized using other denoising techniques (e.g. Gaussian) and additional 

tuning.  

Previous reports have claimed that referenceless methods performed in the image 

domain were limited by the amount of overlap and aliasing that arise when acceleration 

techniques or multi-shot acquisition are used (100,102). In this work, we overcome the 

limitation of PE undersampling by incorporating the GRAPPA reconstruction in the 

optimization; this strategy may be useful in combination with other acceleration methods 

as well. 

Nyquist ghost artifacts can modulate the true image signal and lead to errors in 

ADC estimation via two distinct mechanisms. The first is simple overlap – if any portion 

of a Nyquist ghost overlaps the object it can increase or decrease the object signal. 

Secondly, an incorrect phase produces a spatially varying cosine modulation of the object 

signal (Equation 4.11). In this work we used the ghost signal in the image background as 

an estimate of the overall ghost level. Although ghost signal in the image background 

does not directly produce ADC errors, it is an objective measure of the overall ghost 

level. 

 In this study, we used the 3-line navigator as the reference standard ghost 

correction method. Our implementation of this method gives somewhat different results 

than the vendor’s proprietary implementation, but the average performance of the two 

implementations is similar.  

4.2.5 Conclusions 

Referenceless methods provide a data-based alternative to the three-line navigator for 1st-

order ghost correction, which often fails in breast DWI. We proposed an additional 

referenceless method, Ghost/Object (G/O) minimization, which defines a cost function in 

the image domain that exploits the cosine and sine modulation in the ghosted image and 

the N/2 nature of the ghost. All four referenceless methods show low sensitivity to noise 

levels, especially G/O and SVD in a simulation at increasing noise levels and perform 

well at b-values up to 800 s/mm2. In this work, all three referenceless methods were 

successfully combined with accelerated imaging of R = 3 and outperformed the 3-line 
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navigator correction at all four b-values. Additionally, because each of the three cost 

functions employed contain some unique information, combining the referenceless 

methods with the median of 1st-order parameters showed a trend of improved ghost 

correction performance. 

4.3 Nyquist Ghost Correction of SMS Imaging using 

Referenceless Methods 

While developing and assessing ghost correction in SB data, we simultaneously worked 

to improve resolution using simultaneous multislice (SMS), described in more detail in 

Chapter 5. Thus, as a natural extension of Section 4.2, the referenceless methods were 

assessed in SMS data in this work. The following was previously presented as part of an 

electronic poster entitled Nyquist Ghost Correction of High-Resolution SMS Breast DWI 

with Ghost/Object Minimization at ISMRM 27th Annual Meeting and Exhibition. 

Montreal, Quebec; May 2019. Abstract #3354. 

Jessica A McKay, Steen Moeller, Sudhir Ramanna, An L Church, Michael T Nelson, 

Edward J Auerbach, Kamil Ugurbil, and Patrick J Bolan 

4.3.1 Introduction 

Diffusion weighted imaging (DWI) is increasingly used in breast cancer imaging because 

low apparent diffusion coefficients (ADCs) indicate malignancy. However, the ability to 

detect lesions is extremely limited by the low resolution of typical single-shot spin-echo 

(SS SE) EPI. We recently developed a simultaneous multi-slice (SMS) (33) approach to 

SS SE-EPI for breast DWI that was derived from the Human Connectome Project’s 

(HCP) (122) high-resolution protocol. 

  In EPI, eddy currents and timing errors cause inconsistencies between the positive 

and negative readout lines (RO+/RO-) that manifest as Nyquist ghosts in the phase 

encoding (PE) direction of the image. These ghosts can obstruct the visualization of the 

DW images and bias ADC values. Ghosts are typically corrected using a 3-line navigator, 

which generally works reliably in HCP brain imaging, but often fails in high-resolution 

SMS breast DWI due to insufficient SNR, fat suppression, and B0 homogeneity. 
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Moreover, ghost correction failure in autocalibration scans (ACS) propagates in the SMS 

and GRAPPA reconstructions that are often employed in high resolution imaging.  

One class of alternative ghost correction strategies are referenceless. which are 

conveniently applied without the need for additional data (100–102). Ghost/Object 

minimization (G/O) (108) is one such referenceless method, that minimizes a cost 

function in the image domain. The purpose of this work is to apply reduce residual ghosts 

in high-resolution breast DWI acquired with SMS SE-EPI using G/O to correct 1st order 

ghosts.  

4.3.2 Methods 

Acquisition 

Sixteen breast cancer patients were scanned prone on a Siemens 3 T Prismafit with a 16-

channel breast coil (Sentinelle) under an IRB-approved protocol. DWI was acquired 

using 2D SE-EPI with 256 sagittal slices of 1.25 mm with SMS MB = 4, which are 

reformatted to axial images for clinical viewing. The following parameters were used: 

TR/TE = 6500/60.80 ms, 1.25 mm x 2.5 mm nominal in-plane resolution, head/foot PE 

direction, GRAPPA R = 2, and monopolar diffusion (4 at b = 0, 4 at b = 800 s/mm2). 

Standard T1-weighted anatomical images were also acquired. 

Ghost correction 

Two first-order ghost correction methods were applied offline to both the ACS data and 

each undersampled acquisition on a per-channel and per-slice basis. The 3-line navigator, 

which represents typical online correction, acquires a navigator through ky = 0 (RO+/RO-

/RO+) to measure the phase difference. G/O minimization was performed directly on 

ACS and undersampled data, starting with a wide discrete search and refined with a 

simplex search. After SMS unaliasing, the ghost correction was adjusted in a slice-

specific way, statically for the 3-line navigator (based on the difference between ACS and 

MB navigators) and dynamically for G/O (based on a second iteration of the 

minimization problem). To improve GRAPPA unaliasing performance, original ACS 
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data was combined with RO-reversed ACS data to reduce ghosts before calculating 

weights. 

Analysis 

The residual ghost levels were measured based on the signal in the background region. 

T1-weighted images were automatically masked and resampled onto the DWI to define 

the object region (Figure 4.9). The ghost signal was measured as the whole-volume 

background signal compared to the average signal in a noise-only volume (Figure 4.9). 

 

 

4.3.3 Results 

Two examples of in vivo b = 0 and 800 s/mm2 images are shown in Figures 4.10 and 

4.11. In Figure 4.10, the 3-line navigator clearly fails, causing Nyquist ghosts and poor 

GRAPPA unaliasing performance. Small levels of GRAPPA errors are also present in 

G/O images. Figure 4.11 demonstrate how the artifacts in the PE direction influence the 

SMS unaliasing performance and overall axial image quality. Several artifacts are present 

in the slice dimension after correction by 3-line navigator, which are greatly reduced by 

G/O. 

Background SignalObject Mask

Figure 4.9 – Object mask and background ghost in SMS

Example of object mask overlaid on b = 0 s/mm2 image corrected by the 3-line 

navigator. The ghost intensity is defined as the total background signal compared to 

the signal in a noise-only region (red box). 
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Figure 4.10 – Ghost correction in SMS example case

b = 0 and 800 s/mm2 images from an example case with moderate 3-line navigator 

failure. Nyquist ghosts and GRAPPA aliasing are present in 3-line navigator case, 

where only slight GRAPPA artifacts are present in G/O. 
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Figure 4.11 – Ghost correction in SMS example case 2

b = 0 and 800 s/mm2 images (4 averages each) from a center axial slice. Note that 

the PE direction is through plane, however poor Nyquist ghost correction affects the 

overall axial image quality and the performance of SMS unaliasing. 
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The ghost intensity of G/O is plotted versus the 3-line navigator in Figure 4.12 for 

each acquisition. For all cases, G/O either performs equivalently (on the line) or 

outperforms (to the right of the line) the standard 3-line navigator.  

 

 

 The ghost intensities are plotted separated by b-value in Figure 4.13. According to 

a paired t-test (N = 16) there is a significant difference between the performance of G/O 

and the 3-line navigator at both b = 0 and b = 800 s/mm2. 

4.3.4 Discussion 

The G/O method does not rely on any reference data and was applied directly to both R = 

2 undersampled data and SMS data after unaliasing, allowing for a completely dynamic 

and slice-specific correction.  

In this work the background signal acts as a surrogate for ghost intensity. The 

background includes both Nyquist ghosts and GRAPPA unaliasing artifacts, which are 

often caused by the poor ghost correction of ACS lines. Some unaliasing artifacts were 

present in both G/O and 3-line navigator reconstruction. Importantly, Nyquist ghosts in 

the background region imply a signal change in the object and ghost that may overlap the 

Figure 4.12 – Ghost comparison in SMS

Ghost intensity comparison between Ghost/Object and 3-line navigator. Points on the 

line indicate similar ghost correction performance. Points to the right of the line 

indicate cases where G/O outperformed the standard 3-line navigator. 
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object, biasing the ADC values. Moreover, severe ghost failures make image 

interpretation difficult.  

 

 

4.3.5 Conclusions 

The standard 3-line navigator is insufficient for ghost correction of high resolution, breast 

SE-EPI DWI with SMS. The alternative G/O referenceless method provides more reliable 

1st-order ghost correction in a dynamic and slice-specific way, which improves image 

quality and reduces bias in ADC values compared to the standard correction. 

 

  

Figure 4.13 – Ghost intensities by b-value

P-values indicate statistical significance from paired t-test (N = 16) at each b-value. 

Overall, Ghost/Object yields lower ghost values than the 3-line navigator with 

statistical significance at both b-values. 
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Chapter 5: Use of SMS for High Resolution Breast DWI 

5.1 The AR-SMS Approach 

Typical breast DWI is acquired axially as most radiologists prefer to view bilateral axial 

images. Usually, PE is in the Right/Left direction to avoid aliasing from the chest wall 

and abdomen where there is cardiac and respiratory motion. However, phase encoding 

provides the lowest quality encoding in EPI (see Section 2.1). Thus, it is advantageous to 

acquire sagittal slices and reformat to axial images such that the PE direction is through 

plane in the resulting axial images where it will be least disruptive to the reading, as 

shown in Figure 5.1. This approach is referred to as axially reformatted (AR). Similarly, 

T2-weighted and contrast enhanced T1-weighted anatomical images are typically acquired 

with thick axial slices and/or slice gaps, prioritizing higher in-plane resolution in a given 

scan time. 

 

 

 To acquire sagittal slices, however, with high axial resolution requires very thin 

slices and thus a very high number of slices to cover the whole Right/Left direction. 

Fortunately, SMS imaging has seen significant advancements in the recent past, including 

the Human Connectome Project (HCP) and many other efforts. In this work we adapted 

the HCP methods, developed for brain imaging, for breast DWI. With SMS it is possible 

to acquire a large number of very thin slices in a reasonable scan time.   

Figure 5.1 – Axially-reformatted SMS approach

b = 0 s/mm2 images are shown to explain the acquisition strategy. Sagittal images are 

acquired with MB = 4 and reformatted to axial images for viewing.

Acquired

RO

PE

Reformatted

Slice

RO
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 In this approach, an SMS acceleration of 4x is used to achieve 1.25 mm (RO and 

Anterior/Posterior) x 1.25 mm (slice and Right/Left) x 2.5 mm (PE and Head/Foot) 

resolution. Four averages at b = 0 s/mm2 and 24 at b = 800 s/mm2 in three directions are 

acquired within a 5-minute scan time. An example of the improved resolution is shown in 

Figure 5.2, which highlights the improved lesion conspicuity achieved in this case.  

 

 

5.1.1 Topup distortion correction  

While AR-SMS efficiently achieves full coverage and high resolution, one disadvantage 

is that SMS acceleration does not reduce geometric distortion as in-plane undersampling 

and segmentation do. Thus, we employed FSL’s topup distortion correction (24). For the 

topup correction, the acquisition of fully sampled reference data (b = 0 s/mm2) is repeated 

with reversed phase encoding, which produces equal and opposite distortion used to 

estimate the inhomogeneity of B0. The distortion map is then applied to each subsequent 

acquisition, including those that are diffusion weighted.  

 Examples of phantom and in vivo topup distortion correction are presented in 

Figures 5.3 and 5.4. While the distortion is significantly reduced, there is still noticeable 

residual distortion. Topup relies on a few assumptions that are violated in breast imaging. 

For one, the correction is static and does not account for any B0 changes throughout the 

ADC Maps

AR-SMSRS-EPIStandard

Lesion is easily 
detectable. The cost is 

low SNR.

Lesion is barely
detectable. 

Post-contrast 
subtraction

8 mm 

Lesion Lesion is somewhat
detectable. Partial volume 

increases ADCs.

Figure 5.2 – Lesion conspicuity example

ADC maps zoomed into lesion and compared with post-contrast. Higher resolution 

increases the ability to detect and measure the lesion on the ADC map. 
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scan caused by respiratory motion or unintentional movement of the participant. Second, 

the B0 field is considered to be slowly and smoothly varying, which is often violated in 

breast imaging, especially at interfaces between skin and air. Moreover, the topup model 

does not account for the presence of fat, which can add large discontinuities in the 

resonance frequency measured.  

 

 

 

 

PE PE

Original

Corrected

Coronal Sagittal

Figure 5.3 – Topup example in phantom

b = 0 s/mm2 images of breast phantom before and after topup correction. PE 
distortion is clearly seen in the PE direction, highlighted by the red circle. While 

topup greatly reduces the distortion, there is some residual distortion (blue 
arrow)

SMS Corrected

SMS Original

SB PE +

PE

SB CorrectedSB PE -

PE

Figure 5.4 – Topup example in vivo

Sagittal b = 0 s/mm2 images of reference data and SMS data with and without 

correction. The distortion map is calculated from the SB reference data, acquired 

twice with reversed PE, and applied to the SMS data. The distortion is reduced, 

especially near the nipple (blue arrow) 
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5.2 A Comparison of Methods for High Spatial Resolution DWI in 

Breast MRI 

After combining SMS, referenceless Nyquist ghost correction, and topup distortion 

correction, the image quality was assessed in the clinically setting in the following. This 

work was submitted with revisions on May 14, 2020 to Radiology and is on an 

acceptance track. Jessica A McKay, An L Church, Nathan Rubin, Tim H Emory, Noelle 

F Hoven, Jessica E Kuehn-Hajder, Michael T Nelson, Sudhir Ramanna, Edward J 

Auerbach, Steen Moeller, and Patrick J Bolan 

5.2.1 Introduction 

Diffusion-weighted imaging (DWI) measures the apparent diffusion coefficient (ADC) of 

tissue, which is often lower due to cancer. There is growing interest in using DWI for 

breast cancer imaging for screening, disease characterization, and monitoring treatment 

response (67). DWI is typically acquired using single-shot spin-echo echo planar imaging 

(SE-EPI), which faces several challenges often exacerbated in breast imaging due to the 

large field of view, adipose signal, and respiratory motion that alters the B0 field. 

Standard breast DWI suffers from very low spatial resolution, large geometric distortions, 

chemical shift artifacts, and Nyquist ghost artifacts, which can limit its clinical value. 

Higher resolution may also enable the use of DWI for additional analyses, including 

minimum ADC, DWI radiomics, histogram analysis, rim sign etc. (123,124). 

 Several strategies to improve the image quality of SE-EPI in breast DWI have 

been explored, including readout-segmentation (RS) (47–50), reduced field of view 

(52,53), and multiband encoding in the phase encoding direction (125). A proposed 

strategy uses simultaneous multislice (SMS) imaging (33,36,104) to improve image 

quality in breast DWI (110,126,127). Because the SMS potential is greater in the 

right/left direction based on the coil geometry, this approach acquires sagittal images 

with aggressive SMS to cover a large volume with many thin slices. The images are 

axially reformatted (AR) for interpretation, according to standard clinical practice. Thus, 

the axial images are encoded by the readout and slice directions, which provides high in-
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plane resolution whereas the blurred and artifact-prone phase encoding direction is 

rotated through-plane.  

In this study, we compared the image quality and resolution of standard SE-EPI 

breast DWI with two high-resolution imaging protocols based on RS-EPI and AR-SMS, 

with each optimized to provide full bilateral coverage in a clinically acceptable (<5 

minute) scan time. The three protocols were characterized with phantom resolution 

measurements and in vivo performance was assessed using a multireader study.  

5.2.2 Materials and methods 

Study participants 

In this prospective, IRB-approved and HIPPA-compliant study, women undergoing 

clinical breast MRI at our imaging center were offered additional diffusion scanning to be 

acquired after their clinical scan between December 2016 and December 2018. 

Participants were receiving breast MRI either as part of a treatment response clinical trial 

(Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging And 

moLecular analysis 2 (I-SPY 2 Trial)) or clinical MRI for screening or suspected cancer 

and provided written informed consent. Data from I-SPY 2 may be included in other 

studies (clinicaltrials.gov NCT01042379, NCT02058758), excluding RS-EPI and AR-

SMS.  

Phantom acquisition for resolution assessment 

A commercial breast phantom (Model 131, CaliberMRI, Boulder, CO) based on [Ref 

(128)] with a resolution test grid was scanned with all DWI protocols. The phantom was 

rotated to assess the resolution in each plane. Feature detection was subjectively assessed 

by two MR physicists (JM and PB).  

MRI acquisition  

All images were acquired on 3 T Siemens Prismafit scanners (Siemens 

Healthcare/Healthineers, Erlangen, Germany) using a 16-channel Sentinelle breast coil 

(Philips Medical Systems, Hamburg, Germany). For every participant, standard MRI 
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were acquired, including T2-weighted and a contrast-enhanced (CE) T1-weighted series 

with an intravenous injection of gadolinium-based contrast agent (gadobutrol, 0.1 

mM/kg). RS-EPI and AR-SMS were acquired after clinical imaging was completed. See 

Supplemental Materials for details.  

Three different SE-EPI strategies were used to acquire bilateral breast DWI. 

While not fixed in resolution or volumetric coverage, each protocol was individually 

optimized for a 5-minute scan time. The first, Standard-A, represented the standard 

clinically available breast MRI, using single-shot SE-EPI, compliant with the ACRIN 

6698 clinical trial (11,121) with nominal resolution 1.7 mm x 1.7 mm x 4 mm. Due to 

time restrictions of clinical scanning, a shorter version, Standard-B, with fewer b-values 

was used for participants undergoing clinical breast MRI (non-trial). The vendor’s 

implementation was used for RS-EPI with protocol parameters based on Wisner et al. 

(48), chosen for its high and nearly isotropic resolution, with 5 readout segments and 1.8 

mm x 1.8 mm x 2.4 mm nominal resolution. AR-SMS was implemented by modifying 

the custom SMS EPI acquisition and reconstruction pipeline developed for the Human 

Connectome Project (129). The AR-SMS acquisition used 4x slice acceleration for 1.25 

mm isotropic axial resolution and 2.5 mm through plane (phase encoding) interpolated to 

1.25 mm, and included an additional reference scan with opposite phase encoding for 

geometric distortion correction (130). See Table 5.1 for protocol details.  

Preparing data set for reader analysis  

Digital Imaging and Communications in Medicine (DICOM) images were generated 

online for clinical scans, and standard SE-EPI and RS-EPI DWI. AR-SMS reconstruction 

was performed offline in MATLAB R2017b (MathWorks, Natick, MA) using in-house 

reconstruction; see Supplemental Materials for details. All images were transferred to a 

clinical PACS system (iSite, Philips Healthcare, Andover, MA) for analysis.  

For each participant, a single study was chosen with preference for pre-treatment 

scans when available. Using T2-weighted and CE-subtraction images, all enhancing, 

mass-like lesions within each DWI field of view were identified and measured in length. 
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The largest lesion from every woman was included, and secondary lesions from distant 

slices were included from two women.  
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Reader analysis 

Two lesions of different sizes were used for training the breast radiologists. The 

remaining lesions were independently presented to three radiologists (TE, NH, and JKH 

with 19, 3, and 14 years of breast MRI experience, respectively) in random order in one 

or two (separated by <7 days) sessions. The radiologists were blinded to the participant 

and the DWI method. For each lesion, the radiologists were provided with clinical 

images, b = 800 s/mm2 images, and ADC maps from all three DWI methods, presented 

axially in random order. The lesion was indicated on the CE-subtraction, as shown in 

Figure 5.5.  

 

 

The readers measured the longest dimension on the CE-subtraction and b = 800 

s/mm2 images and lesion-average ADC using a freehand 2D ROI on a representative 

slice. Readers reported their confidence of these measurements using a 5-point Likert 

Method
A

(AR-SMS)

Method
B

(RS-EPI)

Method
C

(Standard-A)

ADC mapsb = 800 s/mm2 images Clinical images

a

b

c f

e

g h

i j

d

Figure 5.5 – Screenshot of PACS setup for case with biopsy-proven cancer

Readers were provided with clinical images, including pre-CE (g), a single post-CE 

(h), and CE-subtraction (i) T1-weighted images and T2-weighted (j), with the lesion 

indicated by a red arrow. Diffusion data included axial b = 800 s/mm2 images (a-c) 

and ADC maps (d-f) for all three methods, randomly ordered as Methods A, B, and C, 

which are labeled here for illustration purposes. The metal needle of the contrast 

injection port caused the artifact on the right breast.
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scale from no confidence (1) to very high confidence (5). Readers reported their 

impression of overall image quality using a scale of one (unusable) to five 

(excellent/equivalent to CE-MRI) and ranked the methods (1st-3rd).  

Statistical analysis  

Scores were fit to a linear mixed effects model including random intercepts for reader and 

participant to account for repeated measurements. The model was used to measure 

differences in the overall image quality, method rank, and confidence in length and ADC 

measurements on DWI. A second model was used, adding the effect of lesion size. 

Intraclass correlation (two-way random effects of type consistency and single) was used 

to determine the inter-reader consistency.  

While primary analysis was performed combining Standard-A and Standard-B for 

larger data size, a sub-analysis separately considered the image quality to confirm that the 

quality was comparable despite fewer b-values used in Standard-B, as shown in the 

Supplemental Material.  

R (V3.6.0, R Core Team, Vienna, Austria) was used for this analysis. Results 

were considered significant for p < 0.05 after a Tukey adjustment for the three pairwise 

comparisons (“emmeans” package in R). 

5.2.3 Results 

Participant characteristics 

40 women (ages 27-78, mean 51 ± 13) consented to and completed additional DWI 

scans; 30 of these (ages 27-78, mean 50 ± 14) presented with enhancing lesions on CE-

subtraction. Of 32 lesions identified for inclusion, two were used for training radiologists, 

leaving 30 for analysis (from 28 participants). See Table 5.2.  
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Phantom  

In the resolution phantom (Figure 5.6), the 1 mm feature was only considered detectable 

in the axial plane on AR-SMS and T2-weighted. The 2 mm feature was detectable in the 

axial plane for all methods but was nearly undetectable in the sagittal plane of Standard-

A.  

 

 

Reader analysis 

Representative examples of large and small lesions are shown in Figures 5.7 and 5.8. All 

three readers rated AR-SMS with the highest image quality and ranked AR-SMS higher 

than both RS-EPI and standard SE-EPI, as shown in Figure 5.9. 

The intraclass correlation for overall image quality was poor to fair, indicating 

that each reader calibrated a unique internal scale. However, the linear mixed effects 

model accounted for the reader and participant effects. The model found that AR-SMS 

outperformed RS-EPI, followed by standard SE-EPI in both image quality and rank 

(Figure 5.9). On the 5-point Likert scale for image quality, RS-EPI rated an average of 

0.57 points higher than standard SE-EPI (p < 0.001), and AR-SMS scored 1.31 points 

higher than standard SE-EPI and 0.74 points higher than RS-EPI (p < 0.001). Similarly, 

Sagittal

Axial

Standard-A AR-SMSRS-EPI T2-weighted Key

Figure 5.6 – Resolution phantom

Comparing feature detection on b = 0 s/mm2 images in resolution grid. Key indicates 

feature sizes. The smallest feature (1 mm), indicated by an arrow, was only 

considered visible on the AR-SMS and T2-weighted axial images. 1 mm and 1.25 mm 

dots in the resolution grids are differentiable on AR-SMS and T2-weighted image.
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on a scale of 1st to 3rd place, AR-SMS ranked highest, followed by RS-EPI and standard 

SE-EPI as shown in Figure 5.9. 

 

 

Clinical Standard-B RS-EPI AR-SMS

a b c

fe

d

hg

Figure 5.7. Small lesion example 

CE-subtraction (a), T2-weighted image (e), b = 800 s/mm2 images (b-d), and ADC maps (f-h) 

are shown, focused on an example of a small enhancing lesion (red arrow). Radiologists were 

asked to measure the longest dimension on b = 800 s/mm2 images (b-d) and a lesion-average 

ADC by drawing a freehand 2-dimensional ROI on each ADC map (f-h). The lesion longest 

diameter was 4.7 mm, measured on the CE-subtraction (a) and averaged across all readers. 

Average measurements on b = 800 s/mm2 images were: (b) Standard = 5.8 mm, (c) RS-EPI = 

4.6 mm, (d) AR-SMS = 5.5 mm. Average ADC measurements were: (f) Standard = 1450, (g) 

RS-EPI = 1590, (h) AR-SMS = 1340 mm2/s. The average quality scores were: Standard = 2.3, 

RS-EPI = 2.7, AR-SMS = 3.7.
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Clinical Standard-A RS-EPI AR-SMS

a b c

fe

d

hg

Figure 5.8. Large lesion example

Post-CE (a), T2-weighted image (e), b = 800 s/mm2 images (b-d), and ADC maps (f-h) are 

shown, focused on an example of a large enhancing lesion (red arrow). Radiologists were 

asked to measure the longest dimension on b = 800 s/mm2 images (b-d) and a lesion-average 

ADC by drawing a freehand 2-dimensional ROI on each ADC map (f-h). The lesion longest 

diameter was 28.8 mm, measured on the CE-subtraction and averaged across all readers. 

Average measurements on b = 800 s/mm2 images were: (b) Standard = 26 mm, (c) RS-EPI = 

25.6 mm, (d) AR-SMS = 26 mm. Average ADC measurements were: (f) Standard = 880, (g) 

RS-EPI = 930, (h) AR-SMS = 840 mm2/s. The average quality scores were: Standard = 2.3, 

RS-EPI = 3.0, AR-SMS = 4.0.
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Histograms in Figure 5.10 indicate the number of reads rated with each 

confidence level for lesion size and ADC measurements, which reflects lesion 

measurability. There was higher confidence in the measurement of lesion size using AR-

SMS and RS-EPI compared with standard SE-EPI (p < 0.001 and p = 0.002, 

respectively); the comparison between AR-SMS and RS-EPI did not reach significance. 

The method had no effect on the confidence in the measurement of lesion-average ADC 

(p ≥ 0.296). See Figure 5.10 for details.  

The statistical model indicated that lesion size played a role in the overall image 

quality scores (p = 0.01) independent of method (p = 0.18), indicating that the lesion size 

Figure 5.9 – Summary of reader study results

Mean overall quality scores on a per-reader basis (a) and method comparison 

according to linear mixed effects model accounting for participant and reader (b). 

Error bars indicate standard error. Readers consistently scored AR-SMS higher than 

RS-EPI and standard SE-EPI. Histogram of relative rank across all three readers and 

all lesions (c) and comparison of ranks according to linear mixed effects model (d) 

including significance levels. AR-SMS was most frequently rated 1st, followed by RS-

EPI at 2nd. Asterix indicate statistical significance based on Tukey-adjusted p-values.

Method 

Comparison
Effect (95% CI) p-value

RS-EPI vs. Standard
0.57

(0.36, 0.77)
<0.001*

AR-SMS vs. 

Standard

1.31 

(1.10, 1.52)
<0.001*

AR-SMS vs. RS-EPI
0.74

(0.54, 0.95)
<0.001*

Method 

Comparison
Effect (95% CI) p-value

RS-EPI vs. Standard
-0.73

(-0.89, -0.58)
<0.001*

AR-SMS vs. 

Standard

-1.53

(-1.69, -1.40)
<0.001*

AR-SMS vs. RS-EPI
-0.80

(-0.95, -0.65)
<0.001*
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did not predict what method would be superior. Multiplicity was 9 for 26 participants (1 

lesion, 3 readers, 3 methods) and 18 for 2 participants (2 lesions, 3 readers, 3 methods).  

 

 

5.2.4 Discussion 

With growing interest in DWI for breast cancer, it is vital to improve the image quality 

and resolution of DWI methods. In this study, we compared three five-minute protocols, 

standard SE-EPI, readout-segmented (RS) EPI, and axially reformatted simultaneous 

multislice (AR-SMS). In both phantom and in vivo measurements, AR-SMS 

outperformed RS-EPI and standard SE-EPI. While both advanced methods have promise 

Figure 5.10 – Confidence of lesion size and ADC measurements

Histograms of confidence ratings in measurement of lesion size (a) and ADC (c) on 

DWI across all readers and lesions. Method comparison (b, d) represents the linear 

mixed effects model accounting for participant and reader. AR-SMS was rated with 

the highest confidence in lesion size measurements on b = 800 s/mm2, followed by 

RS-EPI, and then standard SE-EPI, with statistical significance (b). The ADC 

confidence did not depend on the DWI method (d). Asterix indicate statistical 

significance based on Tukey-adjusted p-values. 

Method 

Comparison

Effect (95% 

CI)
p-value

RS-EPI vs. 

Standard

0.04

(-0.16, 0.25)
0.908

AR-SMS vs. 

Standard

0.16

(-0.05, 0.36)
0.309

AR-SMS vs. RS-

EPI

0.11

(-0.10, 0.32)
0.296

Method 

Comparison
Effect (95% CI) p-value

RS-EPI vs. 

Standard

0.36

(0.15, 0.56)
0.002*

AR-SMS vs. 

Standard

0.48

(0.28, 0.68)
<0.001*

AR-SMS vs. RS-

EPI

0.12

(-0.08, 0.32)
0.460

Confidence in measurement of lesion size

Confidence in ADC measurement

Size Confidence Comparison by Linear Mixed 

Model
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for improving clinical imaging, AR-SMS achieved larger anatomic coverage and better 

image quality than RS-EPI (0.74 points, p < 0.001).  

Both RS-EPI and AR-SMS have unique advantages and challenges. Practically, 

RS-EPI is more commonly available on clinical scanners, and while general SMS 

methods are becoming more widespread, AR-SMS is not commercially available 

currently. By increasing the number of segments, RS-EPI achieves images with reduced 

geometric distortion at the cost of scan time. However, the RS-EPI protocol was limited 

in the anterior-posterior coverage, which prevented the inclusion of most lymph nodes. In 

contrast, AR-SMS encoded a large imaging volume quickly, which allowed for full 

coverage and a large number of averages/directions but requires robust distortion 

correction . Combining the encoding speed of AR-SMS with the reduced distortion of 

RS-EPI may be a promising strategy for future work (131).  

Limitations 

Our study used a subjective rating of image quality with expert readers because there is 

no objective reference standard for defining image quality. Although each reader 

interpreted the 5-point Likert scale differently, the differences between the imaging 

methods were consistent. Furthermore, we did not control all protocol parameters (i.e. 

resolution, averages, volume coverage, diffusion scheme) but rather optimized each 

method independently within a time constraint, as done clinically. All three methods 

could potentially be improved with further optimization, which limits the ability to 

generalize the study results.  

The PACS software used did not support co-localization of ROIs across ADC 

maps and diffusion-weighted source images. Although readers rated the high-resolution 

methods with higher image quality and confidence in size measurements, the confidence 

in measuring ADCs did not change. With co-localization, we would expect the 

confidence in ADC measurement to increase similarly to that of lesion size measurement, 

which significantly improved for RS-EPI and AR-SMS. The confidence in both lesion 

size and lesion-average ADC is likely to increase with additional experience with DWI in 

a clinical setting, especially for methods with higher spatial resolution.  
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In conclusion, the proposed axially reformatted simultaneous multislice imaging 

protocol provided higher spatial resolution and image quality than both the standard spin-

echo EPI breast DWI and a high-resolution readout-segmented EPI approach, based on 

phantom measurements and a reader study of in vivo imaging. Future work is needed to 

further compare specific protocols and compare the clinical performance of these 

techniques. 

5.2.5 Supplemental materials 

Additional methods details 

Table 5.3 includes the acquisition details, including scan order and acquisition times.  

Data acquired with the axially reformatted simultaneous multislice imaging (AR-

SMS) protocol were reconstructed offline in MATLAB 2017b (MathWorks, Natick, MA) 

using an in-house pipeline. Across five random cases, on a single server (quad AMD 

Opteron 6140, 256 GB RAM), the average total reconstruction time, excluding data 

transfer, was 6 hours 36 minutes per case of 28 acquisitions each; approximate times for 

each step are listed. The reconstruction was developed for high image quality and was not 

optimized for efficient reconstruction. Future work would be necessary to speed up the 

reconstruction for clinical use.  

First, each acquisition of undersampled data and reference lines was 

independently corrected for Nyquist ghosts with a slice- and coil-specific, first-order 

correction estimated by ghost/object minimization (110) (40 minutes). Single band and 

fully sampled reference data were used to calculate weights for phase encoding 

unaliasing using GRAPPA (30) and SMS separation using Slice-GRAPPA (36) (10 

minutes). SMS unaliasing was performed on each acquisition (35 minutes), followed by a 

second iteration of slice-specific Nyquist ghost correction on each unaliased slice using 

ghost/object minimization (63 minutes). GRAPPA weights were applied for phase 

encoding unaliasing (39 minutes). The partial Fourier edge was filtered with a sin2 

window (7 seconds). Coil combination was performed using a root sum-of-square (16 

minutes). The magnitude images were then corrected for geometric distortion using topup 



 123 

(130) based on fully sampled reference data with reversed phase encoding (3 hours 8 

minutes). Averaging was performed to combine equal b-values, and then the ADC map 

was calculated using a log-linear fit with masking of negative values (0.5 seconds). 

Finally, the separate axial b-value images and ADC maps were written in Digital Imaging 

and Communications in Medicine (DICOM) format for viewing.  

 
 Clinical Protocol I-SPY 2 Protocol 

Localizer  0:17 Localizer  0:17 

T
1
-weighted 3D GRE (without fat 

suppression) 

1:24 T
1
-weighted 3D GRE (without fat 

suppression) 

1:24 

Interactive shimming   ~2:00 Interactive shimming  ~2:00 

T
1
-weighted 3D GRE (with fat 

suppression)  

 0:32 T
1
-weighted 3D GRE (with fat 

suppression)  

 0:40 

DWI (Standard-B) 3:46 DWI (Standard-A) 4:48 

T
1
-weighted CE (1 pre-contrast, 3 

post-contrast) 

7:52 T
1
-weighted CE (1 pre-contrast, 6 

post-contrast) 

10:44 

T
2
-weighted TIRM 4:59 T

2
-weighted TIRM 4:59 

Spoiled 3D GRE (VIBE) 2:45 Spoiled 3D GRE (VIBE) 2:45 

Axially reformatted SMS (scan 1) 4:54** Axially reformatted SMS (scan 1) 4:54** 

Axially reformatted SMS (scan 2) 1:13** Axially reformatted SMS (scan 2) 1:13** 

RS-EPI 4:58 RS-EPI 4:58 

TOTAL 34:40 TOTAL 38:52 

**Note: AR-SMS was acquired with two additional reference scans because the optimal 
reconstruction was not known a priori. However, the data used for image reconstruction 
(including SMS, GRAPPA, and topup reference scans) were acquired in 4:52.  

Sub-analysis comparing Standard-A and Standard-B 

The standard SE-EPI protocol used was determined by the clinical indication; I-SPY 2 

patients received Standard-A, while clinical, non-trial patients received the shorter 

Standard-B. In order to have a larger number of lesions, the main analysis treated both 

variations of standard SE-EPI (A and B) as a single group, expecting negligible 

Table 5.3 – Acquisition details

All clinical scans were completed before the advanced DWI, which were performed 

for research only. Acquisition times are listed in min:sec. 
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differences between the scans. To confirm this choice, a linear mixed model was 

retrospectively performed in a sub-analysis to fit the image quality ratings after 

separating Standard-A and Standard-B. The quality of Standard-A and Standard-B were 

not statistically different, modeled as 2.11 and 1.92, respectively (p > 0.354). Moreover, 

Table 5.4 shows that both Standard-A and Standard-B were rated significantly lower than 

RS-EPI and AR-SMS. This confirms that the previous interpretation of method 

comparison is consistent for both Standard-A and Standard-B. 

 
Model Method Comparison Effect (95% CI) p-value 

Model 1 – including 
Standard-A 

N = 22 lesions 

RS-EPI vs. Standard-A 0.56 (0.32, 0.80) <0.001* 

AR-SMS vs. Standard-A 1.33 (1.09, 1.58) <0.001* 

AR-SMS vs. RS-EPI 0.77 (0.53, 1.02) <0.001* 

Model 2 – including 
Standard-B 

N = 8 lesions 

RS-EPI vs. Standard-B 0.58 (0.18, 0.98) 0.017 

AR-SMS vs. Standard-B 1.25 (0.85, 1.65) <0.001* 

AR-SMS vs. RS-EPI 0.67 (0.27, 1.07) 0.005* 

Phantom ADC quantification 

The breast phantom (CaliberMRI) contains twelve compartments of varying 

polyvinylpyrrolidone (0 to 40%) and water to imitate in vivo tissue with various ADC 

values. The manufacturer reported nominal b-values for these compartments between 533 

and 1456 mm2/s measured at 18.2°C ± 0.4°C. The breast phantom was scanned in the 16-

channel breast coil (i.e. outside of isocenter) using each method, repeated four times in 

one scan session. The experiment was not temperature controlled and did not include 

gradient non-linearity correction. The temperature of the scan room was approximately 

70°F (21.1°C). The nominal true ADC values reported by the manufacturer were adjusted 

Table 5.4 – Sub-analysis separating Standard-A and Standard-B

Data was separated into two categories based on what standard SE-EPI protocol was 

used (Standard-A or Standard-B). The overall image quality was fit to a linear mixed 

model, including effects from reader and participant, for each group. Results confirm 

that the comparison of image quality is consistent across both Standard-A and 

Standard-B. Asterix indicate statistical significance after Tukey adjustment. 
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by 2.4%/°C following [Ref (132)]. Standard and RS-EPI ADC maps were generated 

online such that details on fitting, filtering, masking etc. are unknown to the authors. AR-

SMS was reconstructed by an inhouse pipeline, including a log-linear fit to produce ADC 

maps. Regions of interest were manually drawn (initials) on Digital Imaging and 

Communications in Medicine (DICOM) images, in a center slice of each compartment to 

measure the mean ADC.  

The mean ADC values from each compartment, averaged across four 

measurements is plotted in Figure 5.11 against the adjusted nominal ADC, where the 

dotted line represents concordance. Despite using varying methods, b-values, averages, 

and resolutions, all three methods measure similar ADC values, which correspond closely 

to the nominal ADC values estimated at 70°F (dotted line). Standard and RS-EPI 

measure ADC values that are slightly higher than those measured by AR-SMS.  
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Figure 5.11 – ADC Comparison

Average ADC values measured in manual ROIs of 12 compartments with varying 

ADCs (5), averaged over four repetitions. Measured values are plotted against 

nominal ADC values estimated based on the manufacturer’s reported values and the 

scan room temperature of about 70°F. Color indicates DWI method and dotted line 

indicates concordance with estimated nominal values. All three methods measure 

reasonable ADC values despite experimental limitations. 
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This ADC comparison is limited by the lack of temperature control, potential 

differences in ADC fitting algorithms, and uncorrected gradient non-linearities, 

especially outside of iso-center. However, the results suggest that both advanced DWI 

methods measure reasonable ADC values without substantial bias. Future work is needed 

to define ADC thresholds and explore the diagnostic value of AR-SMS. 

Lesion size comparison 

In the reader study, radiologists were asked to measure the longest diameter (LD) of the 

lesion on a CE-subtraction image, followed by b = 800 s/mm2 images from each DWI 

method in random order. The radiologist was free to pick a representative slice of their 

choosing or decline to answer based on their perceived inability to measure. The root-

mean-square error (RMSE) was measured between LDs measured on CE-MRI and b = 

800 s/mm2 images from each method. Lesions for which no measurement was recorded 

were excluded.  

The RMSE for each DWI method is listed in Figure 5.12. The lesion LD 

measured on AR-SMS was closest to that measured on the CE-subtraction image, 

followed by RS-EPI. The lesion was considered “unmeasurable” on 5 reads for Standard 

SE-EPI and 2 for each RS-EPI and AR-SMS. 

The comparison of lesion length measurements between CE-MRI and high b-

value images gives us some valuable insight as to how fully DWI captures the story of a 

lesion with respect to the gold standard. This comparison may be especially important in 

the context of contrast-free screening. As anatomical images are acquired with high 

spatial resolution, one would expect that the longest diameter measurements would 

increase in agreement as DWI resolution improves, which is reflected in these results. 

However, this analysis is inherently limited as the contrast of CE-subtraction images is 

not always consistent with that of b = 800 s/mm2 images. Furthermore, the slice positions 

did not match exactly across DWI methods as the radiologists were each free to choose a 

representative slice. Thus, the measurements may not reflect the same region of the 

lesion. 
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DWI Method RMSE (mm)

Number of reads 

considered 

‘unmeasurable’

Standard SE-

EPI
3.88 5 (4 lesions by 2 readers)

RS-EPI 3.03 2 ( 1 lesion by 2 readers)

AR-SMS 2.88 2 (1 lesion by 2 readers)
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Figure 5.12 – Longest diameter comparison

The longest diameter (LD) measured on the b = 800 s/mm2 images compared to that 

measured on the CE-subtraction is plotted for each reader and lesion (a). The root-

mean-square error between the LD measured on CE-subtraction and b = 800 s/mm2

images, in mm, is listed (b) for each DWI method. Standard SE-EPI was 

unmeasurable for 5 reads (4 lesions), RS-EPI for 2 reads (2 lesions), and AR-SMS for 

2 reads (2 lesions). 
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Chapter 6: Future Directions 

In any scientific research, with every small step of progress comes several new questions 

begging to be answered. Here I will list a few open questions and ideas for where to take 

this project next that, if given infinite time, I would explore. Some preliminary data is 

provided where available. These next steps fall into two main areas: applications, like 

clinical applications and extending to other organs, and further technical development. 

6.1 Assess Clinical Value of High Resolution DWI 

In this work, we have shown that axially reformatted (AR) SMS, combined with 

Ghost/Object minimization for ghost correction and topup distortion correction, can 

achieve high resolution breast DWI in a clinically reasonable scan time. Three breast 

radiologists consistently rated AR-SMS higher than and preferred it to both the standard 

SE-EPI and a RS-EPI approach. However, gains in image quality are inconsequential 

unless it simultaneously improves clinical practice and outcomes.  

 I hypothesized that a major factor in the slow clinical adaptation of breast DWI is 

the poor quality and resolution of current methods. Thus, the question is, “does better 

resolution really lead to better diagnostic value?”. To answer, a crucial next step for AR-

SMS is to assess its clinical performance. First, the ADC values should be compared to 

those measured with standard and other advanced techniques, in vivo, to ensure no 

systematic bias based on these methods. These ADC values should additionally be 

assessed to determine the ability to differentiate benign and malignant lesions. Secondly, 

it would be interesting to measure the sensitivity of these methods in a non-contrast 

screening setting, in comparison to both other DWI methods, as well as contrast 

enhanced scans or abbreviated screening protocols.  

6.2 Translation of Techniques Beyond Breast 

MRI of other body regions faces many of the same challenges as breast imaging does, 

especially in the abdomen, including respiratory and cardiac motion, large fat signals, and 

severe B0 inhomogeneities caused by wide FOVs and greater variation in magnetic 

susceptibility. Thus, a reasonable next step would be to apply AR-SMS in other 
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challenging organs, like liver and pelvic imaging. Similarly, the ghost correction methods 

applied here may be useful for other applications, including a wide range of EPI 

acquisitions. The referenceless methods were applied to liver and prostate imaging in the 

following section.  

6.2.1 Referenceless Nyquist Ghost Correction for DWI Outside of the 

Breast 

This work was previously presented as part of an electronic poster entitled Novel Image-

based Nyquist Ghost Correction of Diffusion-Weighted Echo Planar Imaging with Ghost 

Ratio Minimization (GRM) at ISMRM 26th Annual Meeting and Exhibition. Paris, 

France; June 2018. Abstract #5339. 

Jessica A McKay, Steen Moeller, Sudhir Ramanna, Edward J Auerbach, Gregory 

Metzger, Michael T Nelson, Kamil Ugurbil, Essa Yacoub, Patrick J Bolan 

Introduction 

DWI is used in medicine and research for several pathologies and in a wide variety of 

organs, each of which faces unique challenges and considerations. While the linear 

navigator often works reliably to remove Nyquist Ghosts in diffusion imaging in the 

brain, it can be insufficient in some cases. Likewise, the three-line navigator occasionally 

fails in prostate DWI and leaves residual ghost in liver data. This less than ideal navigator 

correction is caused by mechanisms that may be unique to the particular organ, 

acquisition strategy, or even the MR system. These mechanisms may include eddy 

currents that cause time varying phase or spatial dependencies that required higher order 

correction. If, however, the residual ghost is fully or in part caused poor fitting of the 3-

line navigator, referenceless methods may be a valuable tool for a wide variety of data, 

providing a robust correction that can be applied retrospectively to complex raw data. 

These methods work by defining a cost function fcost(κ,φ) which is minimized when the 

image is ghost-free. Examples include the entropy method (100,101), which minimizes 

the entropy in the image domain, the SVD method (102), which operates on k-space, and 

Ghost/Object minimization (G/O), proposed in Chapter 4. The performance of these 

methods is generally good, but it can vary with geometry, signal to noise ratio (SNR), and 
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amount of ghost-object overlap. In this work these referenceless methods, including G/O, 

will be extended to test their performance in brain, prostate, and liver DWI.  

Methods 

To demonstrate in vivo feasibility, each referenceless method was retrospectively applied 

to DWI acquired in several body regions. Corrections were estimated independently for 

each channel, slice, and acquisition (b-value and average) for 1) brain DWI with 

simultaneous multislice (SMS, MB = 4), 2) fully sampled prostate DWI, and 3) liver 

DWI with R = 3 and segmented ACS lines. For parallel imaging cases, the initial ghost 

correction was estimated using the auto calibration scans (ACS) and applied to the 

undersampled data. Ghost correction was then refined on a per-channel and per-repetition 

basis after GRAPPA reconstruction. Apparent diffusion coefficient (ADC) maps were 

generated using a pixel-by-pixel log-linear fit. 

Results 

Brain data acquired with SMS (MB = 4) b = 0 s/mm2 images are shown in Figure 6.1 as a 

montage across all slices and a close-up of a subset, scaled to highlight residual ghosts. 

The online reconstruction fails to fully correct the ghosts in this case, while all four 

referenceless methods achieve almost complete ghost suppression.  

Fully reconstructed axial ADC maps are shown in Figure 6.2 that roughly 

represent the ghost levels in from the prostate and liver DWI. SVD performed poorly in 

all slices of this prostate case, while both entropy and G/O fully suppressed the ghost. In 

the given selected slice of liver DWI, SVD performs best, which is consistent for most 

but not all of the other slices.  
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Figure 6.1 – Brain ADC maps

ADC maps for an example brain case acquired at 3 T with R = 2, scaled to highlight 

Nyquist ghosts. The montage on the left contains all slices, showing that the 3-linle 

navigator consistently leaves residual ghosts. A few slices (red box) are highlighted 

on the right, which shows reduced ghosts using Entropy, SVD, and Ghost/Object. 

Linear Navigator EntropyLinear Navigator (all slices)

SVD Ghost/Object

Figure 6.2 – Prostate and liver ADC maps

a) Fully sampled prostate data acquired at 7 T shows a large ghost after navigator 

correction. Entropy and Ghost/Object fully reduce the ghost. SVD leaves some 

residual ghost. b) liver data acquired at 3 T with R = 3 undersampling and segmented 

ACS lines. The slice shown is representative. However, the performance was variable 

across slices for all methods. 

Courtesy of Greg Metzger

Linear Navigator Entropy SVD Ghost/Objecta)

b)
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Discussion and conclusion 

We have demonstrated the feasibility of ghost correction with ghost/object minimization 

in a variety of DWI data. A careful comparison of G/O with the linear navigator and 

other referenceless methods was performed in breast R = 3 data (106), but further work is 

needed to compare in prostate, liver, and brain imaging. Although background regions 

were assessed visually as a surrogate for ghost correction performance, even 

inconspicuous residual ghosts can bias diffusion parameters in the tissue. 

In general, entropy and SVD methods work well, but in some cases, one performs 

noticeably worse. The addition of G/O provides a third independent option, which can be 

combined with entropy and SVD for increased robustness. 

Ghost correction by G/O is feasible in DWI of both brain and body applications. 

The cost function of G/O has different characteristics than the other referenceless 

methods and may be less sensitive to noise. 

6.3 Additional Technical Developments 

6.3.1 Address distortion and/or resolution with segmentation 

There are two disadvantages of AR-SMS. First, despite the efficient encoding, it still 

requires a long echo spacing, which causes substantial geometric distortion. Distortion 

correction requires a fully sampled reference scan and very long reconstruction time. 

Moreover, even with the correction there is still residual distortion that can complicate 

reading and disrupt colocalization with other images. For example, if one wants to 

measure the ADC in a contrast enhancing lesion, the lesion may have a different 

geometry and might even be hiding a few slices away. The long echo spacing also adds to 

blurring in the PE direction. As seen in Section 5.2, RS-EPI successfully reduces 

geometric distortion by using 5 segments at the cost of a longer acquisition time for a 

single average. Therefore, it may be advantageous to combine the efficiency of AR-SMS 

with the short echo spacing of RS-EPI.  

 A second disadvantage is that with SMS acceleration of 4x, the in-plane 

undersampling is limited. Another way to reduce the effective echo spacing is with 
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multishot (MS) EPI using interleaved segments in the PE direction. While MS-EPI works 

similarly to in-plane undersampling, reconstruction only requires the estimation (directly 

or indirectly) of smooth phase differences between shots compared to filling in every 

point as undersampling requires. Thus, MS-EPI could reduce the effective echo spacing 

beyond that achieved with R = 2. Furthermore, MS-EPI can potentially be implemented 

by replacing some of the averages to improve the distortion without increasing scan time.  

6.3.2 Address Nyquist ghosts  

Referenceless methods performed well for the 1st order phase errors in both standard SE-

EPI and AR-SMS in this work. However, this minimization is time consuming and only 

includes a 0th and 1st order parameter. This ghost correction problem is a good candidate 

for machine learning (133,134). Ghost artifacts can be simulated with complicated 

parameters (e.g. time-varying, higher order, or 2-dimensional) to create a large set to train 

a neural network. In this way, the correction could be more universal and applied to 

ghosts of many types. Furthermore, machine learning could greatly reduce the 

reconstruction time, circumventing the minimization problem.  

6.3.3 Develop objective methods for assessing image quality 

One fundamental limitation of this work is the subjective nature of the method 

comparisons. Here, I present a preliminary exploration of a metric adapted from 

computer vision to objectively measure the resolution of AR-SMS DWI. This work was 

previously presented as part of an electronic poster entitled Adaptation of a Computer 

Vision Blur Metric to Objectively Compare High Resolution DWI Strategies in in vivo 

Breast Imaging at ISMRM 27th Annual Meeting and Exhibition. Montreal, Quebec; May 

2019. Abstract #4116. 

Jessica A McKay, Gregory J Metzger, Steen Moeller, An Church, Michael T Nelson, and 

Patrick J Bolan 

Introduction 

While diffusion weighted imaging (DWI) has shown promise for detecting and 

characterizing breast cancers (135), the low spatial resolution of the standard technique 
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(spin-echo echo planar imaging, SE-EPI) limits lesion detection and biases apparent 

diffusion coefficients (ADCs) due to partial volume effects. 

Several strategies have been proposed to generate high resolution DWI, including 

reduced field-of view (136), steady-state imaging (137), readout-segmented EPI (138), 

and simultaneous multi-slice imaging (SMS) (139,140). It is of important to objectively 

compare techniques throughout development to guide protocol optimization for various 

applications.  

However, comparing resolution can be difficult for several reasons: the nominal 

resolution does not reliably reflect the true image resolution due to blurring effects from 

off-resonance, T2 decay, and respiration, especially in EPI; subjective assessment is 

laborious and prone to bias (141); and phantom assessments cannot fully replicate all in 

vivo sources of image blurring.  

This work adapts an objective measurement from the computer vision field, the 

Crété-Roffet metric (142), to objectively assess the resolution of several DWI strategies. 

The Crété-Roffet metric quantitatively measures blurring from 0 (sharp) to 1 (blurry) and 

has previously been validated against subjective blur assessment. The purpose of this 

work is to use the blur metric as an objective way to compare standard breast DWI with 

two high resolution strategies, including RO-segmented EPI and SMS-EPI and to 

validate the metric using a resolution phantom.  

Methods 

Fifteen breast cancer patients undergoing MRI for monitoring chemotherapy 

response were scanned under an IRB-approved protocol. All measurements were 

performed on a Siemens 3 T PrismaFit scanner using a 16-channel Sentinelle breast coil. 

DWI was acquired with 3 protocols, each constrained to a 5-minute acquisition: standard 

single-shot SE-EPI (Std) following the ACRIN 6698 protocol, readout-segmented EPI 

(RS-EPI) with 5 segments based on Wisner et al.’s protocol (136), and a simultaneous 

multi-slice (SMS) acquisition acquired sagittally and reformatted axially (140). A 

standard anatomical T2-weighted image (T2w) was included for comparison. All 

protocols were repeated on a quantitative breast phantom (CaliberMRI, Boulder, CO) 
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(128) that includes a resolution grid and tissue mimics. Sequence details are provided in 

Table 6.1.  

Image processing was performed in MATLAB using DICOM (magnitude) 

images. Because each protocol was acquired with different nominal resolutions, all 

images were resampled onto a common 0.5 mm isotropic grid (smaller than any nominal 

resolution). The blur metric was calculated independently for each direction.  

 

Parameter Standard RS-EPI AR-SMS T
2
-weighted 

Sequence 
Single-shot SE- 
EPI 

SE-EPI, 
5 RO segments 

Single-shot SE-
EPI 

Turbo spin 
echo 

TR / TE [ms] 8000 / 74 7800 / 64 6500 / 60.80 4500 / 72 

Nominal Resolution 
[mm] (RO x PE)  

1.7 x 1.7 1.8 x 1.8  1.25 x 2.5  0.8 x 0.8  

Slice thickness 4 mm 2.4 mm 1.25 mm 3 mm 

PE R à L A à P H à F R à L 

RO x PE FOV [mm] 320 x 320  350 x 156.8  240 x 240  320 x 320  

# of Slices 36 56 256 60 

Acceleration R = 3 R = 2 
R = 2  
MB = 4 

R = 2 

 

Results 

Figure 6.3 shows axial b = 0 s/mm2 DWI and T2w anatomical images of the 

resolution grids of the breast phantom. The 2 mm feature (red) is barely detectible in the 

Std approach and readily visible with RS-EPI. Only the AR-SMS DWI approach can 

detect the smallest 1 mm feature (blue) and 1.25 mm grid (yellow), which are sharpest in 

the anatomical T2w image. Figure 6.4 shows the three DWI methods and the T2w 

anatomical image from an example in vivo case after resampling to a 0.5 mm common 

grid. The increase in effective resolution from left to right can be readily observed. Figure 

6.5 shows the blur metric measured in the axial plane (average of right-left and anterior-

posterior) for the three DWI methods at both b = 0 and 800 s/mm2, and also for the T2w 

image. Consistent with Figures 6.3 and 6.4, T2w shows the least blurring, followed by 

Table 6.1 – Protocol parameters

All DWI acquired within 5-minute scan time. 
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SMS-EPI, RS-EPI, and finally the standard SE-EPI technique. Note that the b = 800 

s/mm2 image is blurrier than the b = 0 s/mm2 measurement for all DWI methods due to 

increased relative fat signal, eddy currents, and averaging over respiratory cycles.  

 

 

 

 

In Figure 6.5 the standard method shows more in-plane blurring than the readout-

segmented method even though its nominal pixel size is smaller. Figure 6.6 explores this 

further by plotting the blur metric as a function of nominal pixel size for all images in all 

a) Std (b = 0 s/mm2)

PE

c) AR-SMS (b = 0 s/mm2)

PE

b) RS-EPI (b = 0 s/mm2)

PE

Key

d) T2w anatomical

Figure 6.3 – Feature detection in breast phantom

Examples of feature detection in breast phantom imaging in b = 0 s/mm2 DWI 

acquired by a) standard SE-EPI, b) RS- EPI, and c) axially reformatted SMS, and a 

T2w anatomical image (d), all resampled to 0.5 mm isotropic. Arrows indicate the 

smallest features detected (red: 2 mm feature, yellow: 1.25 mm grid, blue: 1 mm 

feature). PE directions are indicated.

Acquired

Interpolated 
to 0.5 mm 
isotropic

Std RS-EPI AR-SMS T2w

0.54

0.68

0.48

0.48

0.46

0.43

0.31

0.33

Figure 6.4 – Example CR metric

Examples of standard SE-EPI, readout-segmented EPI, and axially reformatted SMS 

EPI b = 0 s/mm2 images, and d) T2w anatomical image, all resampled to 0.5 mm 

isotropic to measure the CR metric independently in each direction.
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3 directions. There is a general trend for greater sharpness with smaller pixel sizes (green 

line), but this does not hold for phase encoding in single-shot EPI.  

 
 

 

 

Figure 6.5 – Axial CR metric

Plot of in-plane axial blur metric for different DWI images and T2w anatomical image 

over all 15 patients. Note the close inter-subject consistency. The higher b-value 

shows increased blurring, as expected due to higher eddy currents that contribute to 

blurring and many averages at b = 800 s/mm2.
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Figure 6.6 – CR metric vs nominal resolution

The measured blur metric, after interpolation to 0.5 mm isotropic, is plotted for all 

three directions against the nominal resolution. The green line indicates an 

approximate calibration between the blur metric and the acquired pixel size, based on 

the T2w resolution, which is close to nominal.
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Discussion  

This technique can be used to objectively assess in vivo performance and guide sequence 

optimization. However, because the metric may be noise- and contrast-dependent, further 

work is needed to fully calibrate the blur metric as a tool to measure the true resolution. 

We propose that the green line in Figure 6.6 roughly estimates the relationship between 

the blur metric and the effective resolution. For example, the in-plane blurring observed 

in the standard DWI (1.7 x 1.7 mm) is comparable with a non-EPI encoded image with 

resolution of ~3 x 3 mm, which is consistent with Figure 6.3a where the 2 mm feature is 

blurry, and the 1.25 mm grid is undetectable. Similarly, the true resolution of the T2w 

anatomical image approaches nominal in-plane resolution of 1.2 x 0.8 mm, and the 1 mm 

feature is most sharply detected in the T2w image (Figure 6.3d).  

Conclusions 

While nominal resolution was found to be a poor predictor of image blurriness in single-

shot EPI, the proposed use of the Crété-Roffet blur metric on consistently resampled 

images appears to be a robust and objective means of comparing effective resolution on 

in vivo data. In this comparison, both high-resolution DWI methods showed an 

improvement in in-plane resolution over the standard DWI technique but were inferior to 

the T2w image.  
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Chapter 7: Final Thoughts 

Breast DWI has long been known to provide information about the malignancy of breast 

lesions and has been proposed as a tool for breast screening, monitoring treatment 

response, and staging breast cancer. However, its clinical use is greatly limited due to 

lack of consensus and poor image quality and resolution available, especially outside of 

research institutions. The goal of this work was to improve the image quality and 

resolution of breast DWI, which will improve lesion detection, increase the measurability 

of ADC maps, and improve colocalization with anatomical images, thus improving the 

value of breast DWI. To that aim, Ghost/Object (G/O) minimization and axially 

reformatted simultaneous multislice (AR-SMS) breast DWI were developed through this 

work.  

  AR-SMS uses the standard single shot spin-echo (SE) EPI along with major 

advancements in SMS to acquire full coverage bilateral breast DWI. Within a 5-minute 

scan time, AR-SMS can achieve 1.25 x 1.25 x 2.5 mm nominal resolution, which 

approaches that of typical T2-weighted anatomical images. The major advantages of AR-

SMS are its efficient encoding, which allows for a large number of averages and 

diffusion weights, and its high and nearly true axial resolution. AR-SMS can still suffer 

from Nyquist ghosts, as the 3-line navigator often fails in breast DWI. In this work I 

characterized the ghost artifact and carefully considered the failure of the 3-line 

navigator. While the navigator can account for static B0 inhomogeneity, it is extremely 

sensitive to fat signal and changes throughout the acquisition, like eddy currents. I 

addressed Nyquist ghost correction by developing G/O minimization, which proves to be 

simple, reliable, and insensitive to low SNR and undersampling. I showed that G/O 

minimization reduces ghosts in standard SE-EPI data and the advanced AR-SMS 

approach. Additionally, in AR-SMS data, G/O can be applied iteratively with MB slice 

separation to achieve a slice-specific correction.  

 Finally, the AR-SMS performance, combined with G/O ghost correction and 

topup distortion correction, was evaluated in a reader study. Three breast radiologists 

consistently preferred AR-SMS, to standard SE-EPI and readout-segmented (RS) EPI 
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with 5 segments. Unfortunately, AR-SMS still suffers from geometric distortion, which 

may be improved using segmentation in future work (RS-EPI or MS-EPI).  

 These technical developments improved the spatial resolution of breast DWI and 

reduced the imaging artifacts. A critical next step is to evaluate the diagnostic 

performance of AR-SMS against other DWI techniques and CE-MRI. With continued 

improvements, high quality breast DWI can become widely available in clinical and 

research settings. It is my sincere hope that these technological gains, along with 

numerous other efforts in the field, improve our understanding of breast cancer and 

advance breast cancer treatment, reducing overtreatment and unnecessary biopsies, while 

reliably detecting aggressive cancers in their earliest stages.  
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